Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of a New HC-Adsorption Three-Way Catalyst System for Partial-ZEV Performance

2003-05-19
2003-01-1861
This paper describes a newly developed HC-adsorption three-way catalyst and adsorption system that reduce cold-start HC emissions with high efficiency. This system is the first of its kind anywhere in the world to be implemented on production vehicles. An overview is given of the various improvements made to achieve higher cold-start HC conversion efficiency. Improvement of conversion performance was accomplished by (1) increasing the thermal stability of the HC adsorbent, (2) improving desorbed HC conversion efficiency and durability and (3) optimizing the geometric surface area (GSA) of the substrate. Concretely, the thermal stability of the adsorbent was improved by enhancing the high-temperature durability of zeolite. Improvement of desorbed HC conversion efficiency was accomplished by improving the OSC material so as to match the temperature rise characteristic and usage temperature of the catalyst.
Technical Paper

In-line Hydrocarbon (HC) Adsorber System for Reducing Cold-Start Emissions

2000-03-06
2000-01-0892
An adsorber system for reducing cold-start hydrocarbon (HC) emissions has been developed combining existing catalyst technologies with a zeolite-based HC adsorber. The series flow in-line concept offers a passive and simplified alternative to other technologies by incorporating one additional adsorber substrate into existing converters without any additional valving, purging lines, secondary air, or special substrates. Major technical issues to be resolved for practical use of this system are 1) the ability to adsorb a wide range of HC molecular sizes in the cold exhaust gas and 2) the temperature difference between HC desorption from the adsorber and activation of the catalyst to convert desorbed HCs. This paper describes the current development status of hydrocarbon adsorber aftertreatment technologies. We report results obtained with a variety of adsorber properties, washcoat structures of adsorber catalyst and start-up and underfloor catalyst system combinations.
X