Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Oil Transport Cycle Model for Rotary Engine Oil Seals

2014-04-01
2014-01-1664
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow.
Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Journal Article

Reduction of Cold-Start Emissions through Valve Timing in a GDI Engine

2016-04-05
2016-01-0827
This work examines the effect of valve timing during cold crank-start and cold fast-idle (1200 rpm, 2 bar NIMEP) on the emissions of hydrocarbons (HC) and particulate mass and number (PM/PN). Four different cam-phaser configurations are studied in detail: 1. Baseline stock valve timing. 2. Late intake opening/closing. 3. Early exhaust opening/closing. 4. Late intake phasing combined with early exhaust phasing. Delaying the intake valve opening improves the mixture formation process and results in more than 25% reduction of the HC and of the PM/PN emissions during cold crank-start. Early exhaust valve phasing results in a deterioration of the HC and PM/PN emissions performance during cold crank-start. Nevertheless, early exhaust valve phasing slightly improves the HC emissions and substantially reduces the particulate emissions at cold fast-idle.
Technical Paper

Temperature Sensor for Vehicle

1991-02-01
910493
A high reliability and low cost temperature sensor for motor vehicle has been developed. The principle of measuring temperature is based on the NTC thermistor. And novel production techniques for sealing and electric connection are presented.
Technical Paper

Research in Regard to Sensory Characteristics Measuring for the Impulse Noise of the Engine Valve System

1991-02-01
910620
This research proposes an automatic measuring method for the impulse noise of the valve system in engine production line. This research is composed of the following two parts. (1) The most suitable method for indicating the impulse noise of the valve system - the representative characteristic values - is selected from the general measuring methods for impulse noise. As the result, the crest factor in the frequency band above 1kHz became optimal. (2) By detailed sensory characteristic analysis it was found that impulse noise can be heard better with increasing frequency and that there is little influence in the frequency band with the same frequency as the background noise. Thus the crest factor was obtained for each frequency, and the sensory test for the impulse noise of the valve system is deduced by this linear coupling. As the result of multiple reguression analysis, a high accuracy prediction equetion with a multiple correlation coefficient of 0.91 has been obtained.
Technical Paper

Application of CAE Technology to the Development of Plastic Automotive Components

1991-02-01
910877
The use of CAE software in developing plastic components has advanced rapidly in recent years. This progress has been supported by the development of practical analytical tools, based on the finite element and boundary element methods, and on the dramatic improvements seen in computer performance. Following the introduction of a flow analysis program in 1982, Nissan has developed and implemented advanced programs for use in developing plastic components and has integrated the programs into a unified in-house system. This system is being utilized at the design and manufacturing stages of interior and exterior trim parts and has produced concrete results in different phases of component development. Work is now proceeding on the development of a system that can simultaneously analyze both the component performance and the factors that need to be considered in the manufacturing process.
Technical Paper

A Simulation Method of Rear Axle Gear Noise

1991-05-01
911041
A new experimental method, that enables to estimate the body and driveline sensitivity to unit transmitting error of a hypoid gear for automotive rear axle gear noise, has been developed. Measurements were made by exciting the tooth of the drive-pinion gear and that of the ring gear separately using the special devices designed with regard to simulation of acceleration and deceleration. The characteristic of this method is to estimate the forces at the contact point of the gears. Estimation of these forces is carried out under the condition that the higher stiffness is provided by the tooth of the drive-pinion gear and that of the ring gear, compared with the stiffness of the driveshafts and that of the propeller shaft etc., and relative angular displacement of the torsional vibration between the teeth of the drive-pinion gear and those of the ring gear is constant.
Technical Paper

Development of Abradable Flame Spray Coating Technology

1991-02-01
910400
The authors, et al. have succeeded in the practical application of the abradable flame spray coating, used in aircraft engines for the prevention of air leakage and the improvement of efficiency, to automobile turbochargers for the first time in the world. Two layers consisting of a bond coated layer and an abradable layer used to be coated by separate spray nozzles under the conventional technique. In this paper, equations of relations between various flame spray coating conditions and the quality of coated film, which were derived from measured results, will be described. Flame spray coating conditions, that allow the double layer coating by the same spray nozzle, have been determined for each layer. Temperatures and speeds of the flame were measured by means of two-color type high-speed cameras, and equations of their relations with the flame spray coating conditions are derived from the measured result.
Technical Paper

New Plastic Coloring and Forming System

1991-02-01
910363
This paper describes a new plastic coloring and forming system. The system greatly reduces the time and amount of raw materials necessary for color changes, and eliminates the need for manual cleaning during a color change. This system is well-suited for small-lot production with frequent color changes, as well as for automated production systems. The system is being used by auto parts makers, and is practical in a variety of other fields involved with the coloring and forming of plastics.
Journal Article

Potential of Negative Valve Overlap for Part-Load Efficiency Improvement in Gasoline Engines

2018-04-03
2018-01-0377
This article reports on the potential of negative valve overlap (NVO) for improving the net indicated thermal efficiency (η NIMEP) of gasoline engines during part load. Three fixed fuel flow rates, resulting in indicated mean effective pressures of up to 6 bar, were investigated. At low load, NVO significantly reduces the pumping loses during the gas exchange loop, achieving up to 7% improvement in indicated efficiency compared to the baseline. Similar efficiency improvements are achieved by positive valve overlap (PVO), with the disadvantage of worse combustion stability from a higher residual gas fraction (xr). As the load increases, achieving the wide-open throttle limit, the benefits of NVO for reducing the pumping losses diminish, while the blowdown losses from early exhaust valve opening (EVO) increase.
Journal Article

Analysis of Oil Film Generation on the Main Journal Bearing Using a Thin-Film Sensor and Elasto-Hydrodynamic Lubrication (EHL) Model

2013-04-08
2013-01-1217
Reducing friction in the crankshaft main bearings is an effective means of improving the fuel efficiency of reciprocating internal combustion engines. To realize these improvements, it is necessary to understand the lubricating conditions, in particular the oil film pressure distributions between crankshaft and bearings. In this study, we developed a thin-film pressure sensor and applied it to the measurement of engine main bearing oil film pressure in a 4-cylinder, 2.5 L gasoline engine. This thin-film sensor is applied directly to the bearing surface by sputtering, allowing for measurement of oil film pressure without changing the shape and rigidity of the bearing. Moreover, the sensor material and shape were optimized to minimize influence from strain and temperature on the oil film pressure measurement. Measurements were performed at the No. 2 and 5 main bearings.
Journal Article

Injection Nozzle Coking Mechanism in Common-rail Diesel Engine

2011-08-30
2011-01-1818
The hole diameter of injection nozzles in diesel engines has become smaller and the nozzle coking could potentially cause injection characteristics and emissions to deteriorate. In this research, engine tests with zinc-added fuels, deposit analyses, laboratory tests and numerical calculations were carried out to clarify the deposit formation mechanisms. In the initial phase of deposit formation, lower zinc carboxylate formed close to the nozzle hole outlet by reactions between zinc in the fuel and lower carboxylic acid in the combustion gas. In the subsequent growth phase, the main component changed to zinc carbonate close to nozzle hole inlet by reactions with CO₂ in the combustion gas. Metal components and combustion gases are essential elements in the composition of these deposits. One way of removing these deposits is to utilize cavitations inside the nozzle holes.
Journal Article

Measurement of Oil Film Thickness in the Main Bearings of an Operating Engine using Thin-Film Electrode

2011-08-30
2011-01-2117
Oil film thickness is one of the most important issues for optimization of bearing design. A technique has been developed to measure oil film thickness by noting the change in capacitance between the shaft and a thin-film electrode of several micrometers thickness formed on the surface of a bearing. The authors applied this technique to the main journals of an automobile engine and measured the oil film thickness up to maximum speed and full load. The oil film thickness became thinner with increased engine load, and then turned thicker with increased engine speed.
Journal Article

Research into Engine Friction Reduction under Cold Conditions - Effect of Reducing Oil Leakage on Bearing Friction

2014-04-01
2014-01-1662
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction.
Technical Paper

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

1997-10-01
972837
Detergent additives in automotive gasoline fuel are mainly designed to reduce deposit formation on intake valves and fuel injectors, but it has been reported that some additives may contribute to CCD formation. Therefore, a standardized bench engine test method for CCDs needs to be developed in response to industry demands. Cooperative research between the Petroleum Association of Japan (PAJ) and the Japan Automobile Manufacturers Association, Inc. (JAMA), has led to the development of a 2.2L Honda engine dynamometer-based CCD test procedure to evaluate CCDs from fuel additives. Ten automobile manufacturers, nine petroleum companies and the Petroleum Energy Center joined the project, which underwent PAJ-JAMA round robin testing. This paper describes the CCD test development activities, which include the selection of an engine and the determination of the optimum test conditions and other test criteria.
Technical Paper

Research on Crankshaft System Behavior Based on Coupled Crankshaft-Block Analysis

1997-10-01
972922
Achieving a multi-cylinder engine with excellent noise/vibration character sties and low friction at the main bearings requires an optimal design not only for the crankshaft construction but also for the bearing support system of the cylinder block. To accomplish that, it is necessary to understand crankshaft system behavior and the bearing load distribution for each of the main bearings. Crankshaft system behavior has traditionally been evaluated experimentally because of the difficulty in performing calculations to predict resonance behavior over the entire engine speed range. A coupled crankshaft-block analysis method has been developed to calculate crankshaft system behavior by treating vibration and lubrication in a systematic manner. This method has the feature that the coupled behavior of the crankshaft and the cylinder block is analyzed by means of main bearing lubrication calculations. This paper presents the results obtained with this method.
Technical Paper

Assessing the Windage Tray Blockage Effect on Aeration in the Oil Sump

2007-10-29
2007-01-4109
The windage tray effect on aeration in the engine sump was assessed by replacing much of the windage tray materials with wire meshes of various blockages. The mesh was to prevent direct impact of the oil drops spinning off the crank shaft onto the sump oil, and simultaneously, to provide sufficient drainage so that there was no significant build up of windage tray oil film that would interact with these droplets. Aeration at the oil pump inlet was measured by X-ray absorption in a production V-6 SI engine motoring at 2000 to 6000 rpm. Within experimental uncertainty, these windage tray changes had no effect on aeration. Thus activities in the sump such as the interaction of the oil drops spun from the crank shaft with the sump oil or with the windage tray, and the agitation of the sump oil by the crank case gas, were not major contributors to aeration at the pump inlet.
Technical Paper

Simultaneous Attainment of Low Fuel Consumption High Output Power and Low Exhaust Emissions in Direct Injection SI Engines

1998-02-01
980149
This paper describes simultaneous attainment in improving fuel consumption, output power and reducing HC emissions with a direct injection S.I. engine newly developed in Nissan. Straight intake port is adopted to increase discharge coefficient under WOT operation and horizontal swirl flow is generated by a swirl control valve to provide stable stratified charge combustion under part load conditions. As a result, fuel consumption is reduced by more than 20% and power output is improved by approximately 10%. Moreover, unburned HC is reduced by equivalently 30% in engine cold start condition. An application of diagnostic and numerical simulation tools to investigate and optimize various factors are also introduced.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
X