Refine Your Search

Topic

Author

Search Results

Technical Paper

Analysis of Unburned Hydrocarbon Generated from Wall under Lean Combustion

2020-04-14
2020-01-0295
Combustion of a lean air-fuel mixture diluted with a large amount of air or Exhaust Gas Recirculation (EGR) gas is one of the important technologies that can reduce thermal NOx and improve gasoline engine fuel economy by reducing cooling loss. On the other hand, lean combustion increases unburned Hydro Carbon (HC) and unburned loss compared to stoichiometric combustion. This is because lean combustion reduces the burning rate of the air-fuel mixture and forms a thick quenching layer near the wall surface. In this study, the relationship between the thickness of the unburned HC and the excess air ratio is analyzed using Laser Induced Fluorescence (LIF) method and Computational Fluid Dynamic (CFD) of combustion. The HC distribution near the engine liner when the excess air ratio is increased is investigated by LIF. As a result, it is found that the quenching distance of the flame in the cylinder is larger for lean conditions than the general single-wall quenching relationship.
Technical Paper

Exhaust Gas Sensor with High Water Splash Resistant Layer for Lower Emission

2020-04-14
2020-01-0565
Increasingly stringent regulations call for the reduction of emissions at engine startup to purify exhaust gas and reduce the amount of CO2 emitted. Air-fuel ratio (A/F) sensors detect the composition of exhaust gas and provide feedback to control the fuel injection quantity in order to ensure the optimal functioning of the catalytic converter. Reducing the time needed to obtain feedback control and enabling the restriction-free installation of A/F sensors can help meet regulations. Conventional sensors do not activate feedback control immediately after engine startup as the combination of high temperatures and splashes of condensed water in the exhaust pipe can cause thermal shock to the sensor element. Moreover, sensors need to be installed near the engine to increase the catalyst reaction efficiency. This increases the possibility of water splash from the condensed water in the catalyst.
Technical Paper

Low-Emission and Fuel-Efficient Exhaust System with New Air-Fuel Ratio Sensor

2020-04-14
2020-01-0655
This paper describes an exhaust system using a new air-fuel ratio (hereinafter, A/F) sensor that contributes to low emissions and low fuel consumption of gasoline engines. As the first technical feature, the water splash resistance of the A/F sensor has been substantially improved which allows A/F control to be enabled without delay during engine cold start. To realize this capability, it is important that the sensor characteristics are not affected by the condensed water generated in the exhaust pipe. Therefore, a technique that has the effectiveness of a water splash resistance layer with water repellent function is demonstrated. As the second technical feature, the power consumption of the sensor has been substantially reduced. This is achieved by improving thermal efficiency of the sensor that the element can be activated at a low temperature.
Technical Paper

The Effect of Operating Conditions at Idle in the S.I. Engine

1997-10-01
972990
A gasoline engine with an electronically controlled fuel injection system has substantially better fuel economy and lower emissions than a carburetted engine. In general, the stability of engine operation is improved with fuel injector, but the stability of engine operation at idle is not improved compared with a carburetted gasoline engine. In addition, the increase in time that an engine is at idle due to traffic congestion has an effect on the engine stability and vehicle reliability. Therefore, in this research, we will study the influence of fuel injection timing, spark timing, dwell angle, and air-fuel ratio on engine stability at idle.
Technical Paper

Improvement of Lambda Control Based on an Exhaust Emission Simulation Model that Takes into Account Fuel Transportation in the Intake Manifold

1990-02-01
900612
This paper presents an improved exhaust emission simulation model that takes into account fuel transportation behavior in order to obtain more precise air-fuel ratio control, which is needed to meet stringent exhaust emission standards. This simulation model is based on experimental formulas for air and fuel behavior in the intake manifold, especially during transient engine operation. Fuel behavior, including the effect of wall flow on the air-fuel ratio, is obtained analytically. Predictions are then made of the exhaust emissions from a car operated under official driving schedules. The new simulation model is a useful tool in the design and development of fuel supply control systems. An outline of the new model is presented first along with a comparison of the calculated and experimental results. The air-fuel ratio control strategy derived with this model is then described.
Technical Paper

Development of NOx Reduction System for Diesel Aftertreatment with Sulfur Trap Catalyst

2007-04-16
2007-01-0237
The Diesel Particulate and NOx Reduction System (DPNR) is an effective technology as a diesel after-treatment system, which can reduce particulate matter (PM) and nitrogen oxides (NOx) simultaneously. However, it requires desulfurization control since the DPNR catalyst is poisoned by sulfur components in the exhaust gas from the fuel and lubricant. Desulfurization control causes some degree of fuel penalty and thermal deterioration of the DPNR catalyst because it requires control of rich air fuel ratio and high temperature simultaneously. In this paper, we investigated a new system with a sulfur trap catalyst which can trap sulfur components included in the exhaust gas as sulfates (Sulfur trap DPNR). In this system, desulfurization control is not performed because the sulfur poisoning of the DPNR catalyst is drastically suppressed by the sulfur trap catalyst. In the present DPNR, periodic desulfurization control is required.
Technical Paper

Development of Next-Generation NOx Reduction System for Diesel Exhaust Emission

2008-04-14
2008-01-0065
Diesel particulate and NOx reduction system (DPNR) is an effective technology for the diesel after-treatment system, which can reduce particulate matter (PM) and nitrogen oxides (NOx) simultaneously. The DPNR has been developed under the Toyota D-CAT (Diesel Clean Advanced Technology) concept. Further improvement of the DPNR is hoped for cleaner air in the future. This paper reviews the results of our study to improve the NOx purification performance on the DPNR. The NOx reduction performance of the catalysts deteriorates due to thermal deterioration and sulfur poisoning. In order to improve the thermal resistance of the catalysts, the suppression of precious metal sintering in the catalyst has been studied. As a result, higher catalytic activity after aging especially under lower temperature conditions was obtained. On the other hands, improvement of desulfurization performance is one of the key technologies in order to keep the high NOx reduction capability of the catalyst.
Technical Paper

Crank-angle-resolved Measurements of Air-fuel Ratio, Temperature, and Liquid Fuel Droplet Scattering in a Direct-injection Gasoline Engine

2010-10-25
2010-01-2246
Simultaneous crank-angle-resolved measurements of gasoline vapor concentration, gas temperature, and liquid fuel droplet scattering were made with three-color infrared absorption in a direct-injection spark-ignition engine with premium gasoline. The infrared light was coupled into and out of the cylinder using fiber optics incorporated into a modified spark plug, allowing measurement at a location adjacent to the spark plug electrode. Two mid-infrared (mid-IR) laser wavelengths were simultaneously produced by difference-frequency-generation in periodically poled lithium niobate (PPLN) using one signal and two pump lasers operating in the near-infrared (near-IR). A portion of the near-IR signal laser residual provided a simultaneous third, non-resonant, wavelength for liquid droplet detection. This non-resonant signal was used to subtract the influence of droplet scattering from the resonant mid-IR signals to obtain vapor absorption signals in the presence of droplet extinction.
Technical Paper

New Exhaust Emission Control System with Two A/F Sensors

2017-03-28
2017-01-0917
Exhaust systems must satisfy a wide range of requirements, including lowering emissions to comply with future fuel economy and emissions regulations. To help meet these requirements, new emissions control systems have been developed today. In addition, since air-fuel ratio (hereafter, A/F) control has a major impact on emissions, a new two-A/F sensor system with A/F sensors provided both upstream and downstream of the catalyst was developed, incorporating an A/F control capable of further lowering emissions with greater robustness. This development identified the hysteresis characteristics of the O2 sensor downstream of the catalyst as an important factor affecting emissions during conventional A/F control. Subsequently, reaction analysis was carried out using sensor reaction models and by evaluating sensors under real-world operating conditions.
Technical Paper

Development of Low Pressure Loop EGR System for Diesel Engines

2011-04-12
2011-01-1413
Low pressure loop (LPL) EGR systems are effective means of simultaneously reducing the NOx emissions and fuel consumption of diesel engines. Further lower emission levels can be achieved by adopting a system that combines LPL EGR with a NOx storage and reduction (NSR) catalyst. However, this combined system has to overcome the issue of combustion fluctuations resulting from changes in the air-fuel ratio due to EGR gas recirculation from either NOx reduction control or diesel particulate filter (DPF) regeneration. The aim of this research was to reduce combustion fluctuations by developing LPL EGR control logic. In order to control the combustion fluctuations caused by LPL EGR, it is necessary to estimate the recirculation time. First, recirculation delay was investigated. It was found that recirculation delay becomes longer when the LPL EGR flow rate or engine speed is low.
Technical Paper

Effect of Gasoline Composition on Engine Performance

1993-03-01
930375
In order to clarify the effect of each gasoline component on engine performance during warm-up, changes in the air-fuel ratio and quantity of wall flow (liquid gasoline on the induction port) were measured using ordinary gasolines and model gasolines consisting of a blend of several hydrocarbons and MTBE (methyl-tertiary-butyl-ether). The unburned air-fuel mixture in a combustion chamber was sampled via a solenoid valve and analyzed by gas chromatography to investigate the vaporization rate of each component. The results show that MTBE has an important effect on driveability because it contains oxygen and easily vaporizes, resulting in a lean mixture in the transient state. The popular driveability index, T50 (50% distillation temperature), does not provide an adequate means of evaluating MTBE-blended gasoline.
Technical Paper

Flame Shape Determination Using an Optical-Fiber Spark Plug and a Head-Gasket Ionization Probe

1994-10-01
941987
A method for determining the flame contour based on the flame arrival time at the fiber optic (FO) spark plug and at the head gasket ionization probe (IP) locations has been developed. The experimental data were generated in a single-cylinder Ricardo Hydra spark-ignition engine. The head gasket IP, constructed from a double-sided copper-clad circuit board, detects the flame arrival time at eight equally spaced locations at the top of the cylinder liner. Three other IP's were also installed in the cylinder head to provide additional intermediate data on flame location and arrival time. The FO spark plug consists of a standard spark plug with eight symmetrically spaced optical fibers located in the ground casing of the plug. The cylinder pressure was recorded simultaneously with the eleven IP signals and the eight optical signals using a high-speed PC-based data acquisition system.
Technical Paper

Effect of Engine Design/Control Parameters and Emission Control Systems on Specific Reactivity of S.I. Engine Exhaust Gases

1995-02-01
950807
In 1994, the California Air Resources Board implemented low-emission vehicle (LEV) standards with the aim of improving urban air quality. One feature of the LEV standards is the increasingly tighter regulation of non-methane organic gases (NMOG), taking into account ozone formation, in addition to the existing control of non-methane hydrocarbons (NMHC). Hydrocarbons and other organic gases emitted by S.I. engines have been identified as a cause of atmospheric ozone formation. Since the reactivity of each chemical species in exhaust emissions differs, the effect on ozone formation varies depending on the composition of the exhaust gas components. This study examined the effect of different engine types, fuel atomization conditions, turbulence and emission control systems on emission species and specific reactivity. This was done using gas chromatographs and a high-performance liquid chromatograph to analyze exhaust emission species that affect ozone formation.
Technical Paper

Turbulence and Cycle-by-Cycle Variation of Mean Velocity Generated by Swirl and Tumble Flow and Their Effects on Combustion

1995-02-01
950813
Combinations of swirl flow and tumble flow generated by 13 types of swirl control valve were tested by using both impulse steady flow rig and LDV. Comparison between the steady flow characteristics and the result of LDV measurement under motoring condition shows that tumble flow generates turbulence in combustion chamber more effectively than swirl flow does, and that swirling motion reduces the cycle by cycle variation of mean velocity in combustion chamber which tends to be generated by tumbling motion. Performance tests are also carried out under the condition of homogeneous charge. Tumble flow promotes the combustion speed more strongly than expected from its turbulence intensity measured by LDV. It is also shown that lean limit air fuel ratio does not have a strong relation with cycle variation of mean velocity but with turbulence intensity.
Technical Paper

Development of a New Compound Fuel and Fluorescent Tracer Combination for Use with Laser Induced Fluorescence

1995-10-01
952465
Laser induced fluorescence (LIF) is a useful method for visualizing the distribution of the air-fuel ratio in the combustion chamber. The way this method is applied mainly depends on the fluorescent tracer used, such as biacetyl, toluene, various aldehydes, fluoranthene or diethylketone, among others. Gasoline strongly absorbs light in the UV region, for example, at the 248-nm wavelength of broadband KrF excimer laser radiation. Therefore, when using this type of laser, iso-octane is employed as the fuel because it is transparent to 248-nm UV light. However, since the distillation curves of iso-octane and gasoline are different, it can be expected that their vaporization characteristics in the intake port and cylinder would also be different. The aim of this study was to find a better fuel for use with LIF at a broadband wavelength of 248 nm. Three tasks were undertaken in this study.
Technical Paper

Experimental Investigation of Smoke Emission Dependent upon Engine Operating Conditions

1997-05-01
971658
Smoke is emitted in diesel engines because fuel injected into the combustion chamber burns with insufficient oxygen. The emission smoke from diesel engines is a very important air pollution problem. Smoke emission, which is believed to be largely related to the diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore, the smoke emission is dependent on diffusion combustion phenomena, which are controlled by engine parameters. This paper presents an analysis of combustion by relating the smoke emission with heat release in diesel engines. An analysis is made of the diffusion combustion quantity, the smoke emission, and the fraction of diffusion combustion as related to the engine parameters which are air-fuel ratio, injection timing, and engine speed.
Technical Paper

Air-Fuel Ratio Measurement Diagnostics During Cranking and Startup in a Port-Fuel-Injected Spark-Ignition Engine

2004-06-08
2004-01-1915
Cranking and startup fuel control has become increasingly important due to ever tightening emission requirements. Additionally, engine-off strategies during idle will require substantially more engine startup events with the associated need for very clean starts. Thus, knowledge of an engine's Air-Fuel Ratio (AFR) during its early cycles is necessary in order to optimize cranking and startup fueling. This paper examines and compares two methods of measuring an engine's AFR during engine startup (approximately the first second of operation); an in-cylinder technique using a Fast Flame Ionization Detector (FFID) and the conventional exhaust based Universal Exhaust Gas Oxygen (UEGO) sensor method. Engine starts using a Ford Zetec engine were performed at three different temperatures (0, 20 and 90 C) as well as different initial engine starting positions.
Technical Paper

Study of Improvements in NOx Reduction Performance on Simultaneous Reduction System of PM and NOx

2005-10-24
2005-01-3884
Performance improvements were studied for the diesel particulate and NOx reduction system (DPNR), a system that simultaneously reduces NOx and Particulate Matter (PM) from diesel engine exhaust gas. The experimental system (hereinafter called the “dual DPNR”) consists of two DPNR catalysts arranged in parallel, each provided with an exhaust throttle valve downstream to control the exhaust gas flow to the catalyst, plus a fuel injector that precisely controls the air-fuel ratio and the catalyst bed temperature. The fuel injector is used to supply a rich mixture to the DPNR catalyst, and the flow of exhaust gas is switched between the two catalysts by operating the exhaust throttle valves alternately. Tests were conducted with the engine running at steady state. The results indicated that the NOx reduction performance dramatically improved and the loss of fuel economy from the NOx reduction reduced.
Technical Paper

Development of the Nissan Electronically Controlled Carburetor System

1978-02-01
780204
An electronically controlled closed-loop carburetor system has been developed. This system's air-fuel ratio control is characterized by the air bleeds being controlled by turning the solenoid valves on and off at a constant frequency. The frequency above 30 Hz was desirable for practical performances. Some improvements and developments were made to the carburetor, the solenoid valve and the control unit. In application of this system to a three-way catalytic system with O2 sensor, the emissions met the 1978 Japanese standards.
Technical Paper

Performance and NOx Emissions Modeling of a Jet Ignition Prechamber Stratified Charge Engine

1976-02-01
760161
The development of a cycle simulation model for the jet ignition prechamber stratified charge engine is described. Given the engine geometry, load, speed, air-fuel ratios and pressures and temperatures in the two intakes, flow ratio and a suitable combustion model, the cycle simulation predicts engine indicated efficiency and NO emissions. The relative importance of the parameters required to define the combustion model are then determined, and values for ignition delay and burn angle are obtained by matching predicted and measured pressure-time curves. The variation in combustion parameters with engine operating variables is then examined. Predicted and measured NO emissions are compared, and found to be in reasonable agreement over a wide range of engine operation. The relative contribution of the prechamber NO to total exhaust NO is then examined, and in the absence of EGR, found to be the major source of NO for overall air-fuel ratios leaner than 22:1.
X