Refine Your Search

Topic

Author

Search Results

Journal Article

Reduction of Cold-Start Emissions through Valve Timing in a GDI Engine

2016-04-05
2016-01-0827
This work examines the effect of valve timing during cold crank-start and cold fast-idle (1200 rpm, 2 bar NIMEP) on the emissions of hydrocarbons (HC) and particulate mass and number (PM/PN). Four different cam-phaser configurations are studied in detail: 1. Baseline stock valve timing. 2. Late intake opening/closing. 3. Early exhaust opening/closing. 4. Late intake phasing combined with early exhaust phasing. Delaying the intake valve opening improves the mixture formation process and results in more than 25% reduction of the HC and of the PM/PN emissions during cold crank-start. Early exhaust valve phasing results in a deterioration of the HC and PM/PN emissions performance during cold crank-start. Nevertheless, early exhaust valve phasing slightly improves the HC emissions and substantially reduces the particulate emissions at cold fast-idle.
Journal Article

Potential of Negative Valve Overlap for Part-Load Efficiency Improvement in Gasoline Engines

2018-04-03
2018-01-0377
This article reports on the potential of negative valve overlap (NVO) for improving the net indicated thermal efficiency (η NIMEP) of gasoline engines during part load. Three fixed fuel flow rates, resulting in indicated mean effective pressures of up to 6 bar, were investigated. At low load, NVO significantly reduces the pumping loses during the gas exchange loop, achieving up to 7% improvement in indicated efficiency compared to the baseline. Similar efficiency improvements are achieved by positive valve overlap (PVO), with the disadvantage of worse combustion stability from a higher residual gas fraction (xr). As the load increases, achieving the wide-open throttle limit, the benefits of NVO for reducing the pumping losses diminish, while the blowdown losses from early exhaust valve opening (EVO) increase.
Technical Paper

Effect of Fuel Dissolved in Crankcase Oil on Engine-Out Hydrocarbon Emissions from a Spark-Ignited Engine

1997-10-01
972891
A single-cylinder, spark-ignited engine was run on a certification test gasoline to saturate the oil in the sump with fuel through exposure to blow-by gas. The sump volume was large relative to production engines making its absorption-desorption time constant long relative to the experimental time. The engine was motored at 1500 RPM, 90° C coolant and oil temperature, and 0.43 bar MAP without fuel flow. Exhaust HC concentrations were measured by on-line FID and GC analysis. The total motoring HC emissions were 150 ppmC1; the HC species distribution was heavily weighted to the low-volatility components in the gasoline. No high volatility components were visible. The engine was then fired on isooctane fuel at the above conditions, producing a total engine-out HC emission of 2300 ppmC1 for Φ = 1.0 and MBT spark timing.
Technical Paper

CFD Quality - A Calibration Study for Front-End Cooling Airflow

1998-02-23
980039
There is a recognized need in the industry to improve the quality of our CFD (Computational Fluid Dynamics) processes. One part of that initiative is to measure the accuracy of the current processes and identify opportunities for improvement. This report documents the results of a disciplined calibration process that uses statistical analyses techniques to assess CFD quality. The process is applied to UH3D, a Navier-Stokes solver used at Ford to model vehicle front-end geometry and engine cooling systems. The study is focused on a Taurus under relatively ideal circumstances to address one of the major deliverables from the analytical process, i.e., what is the accuracy of the front-end cooling airflow predictions? To address this question, high quality isothermal experiments and calculations were conducted on twenty-three front-end configurations at four non-idle operating conditions.
Technical Paper

The Mars Gravity Biosatellite: Thermal Design Strategies for a Rotating Partial Gravity Spacecraft

2007-07-09
2007-01-3078
A rotating spacecraft which encloses an atmospheric pressure vessel poses unique challenges for thermal control. In any given location, the artificial gravity vector is directed from the center to the periphery of the vehicle. Its local magnitude is determined by the mathematics of centripetal acceleration and is directly proportional to the radius at which the measurement is taken. Accordingly, we have a system with cylindrical symmetry, featuring microgravity at its core and increasingly strong gravity toward the periphery. The tendency for heat to move by convection toward the center of the craft is one consequence which must be addressed. In addition, fluid flow and thermal transfer is markedly different in this unique environment. Our strategy for thermal control represents a novel approach to address these constraints. We present data to theoretically and experimentally justify design decisions behind the Mars Gravity Biosatellite's proposed payload thermal control subassembly.
Technical Paper

Examination of the Corrosion Behavior of Creep-Resistant Magnesium Alloys in an Aqueous Environment

2007-04-16
2007-01-1023
An electrochemical testing protocol for assessing the intrinsic corrosion-resistance of creep-resistant magnesium alloys in aqueous environments, and effects of passivating surface films anticipated to develop in the presence of engine coolants is under development. This work reports progress in assessing the relative corrosion resistance of the base metals (AMC-SC1, MRI-202S, MRI-230D, AM50 and 99.98% Mg) in a common test environment, based on a near-neutral pH buffered saline solution, found to yield particularly stable values for the open-circuit or corrosion potential. This approach was found to provide a platform for the eventual assessment of the durability of certain passivating layers expected to develop during exposure of the magnesium alloys to aqueous coolants.
Technical Paper

Cooling Inlet Aerodynamic Performance and System Resistance

2002-03-04
2002-01-0256
This report is a contribution to the understanding of inlet aerodynamics and cooling system resistance. A characterization of the performance capability of a vehicle front-end and underhood, called the ram curve, is introduced. It represents the pressure recovery/loss of the front-end subsystem - the inlet openings, underhood, and underbody. The mathematical representation, derived from several experimental investigations on vehicles and components, has four basic terms: Inlet ram pressure recovery; free-stream energy recovered when the vehicle is moving Basic inlet loss; inlet restriction when the vehicle is stationary Pressure loss of the engine bay Engine bay-exit pressure Not surprisingly, the amount of frontal projection of radiator area through the grille, bumper and front-end structure (called projected inlet area), and flow uniformity play a major role in estimating inlet aerodynamic performance.
Technical Paper

Correlation of Exhaust Valve Temperatures with Engine Reynolds Number in a 1.9 L Engine

1992-02-01
920063
Exhaust valve temperatures are important in the selection of valve materials, and have strong effects on borderline spark angle and pre-ignition borderline limit. In order to support analytical modeling of exhaust valve temperatures and to correlate exhaust valve temperatures as a function of engine Reynolds number, exhaust valve temperatures were mapped as a function of spark angle and engine coolant temperatures at 2000 rpm. In addition temperatures were measured at wide open throttle at 2000, 3000, and 4000 rpm. The exhaust valve temperature was expressed as a dimensionless temperature using the exhaust gas temperature and the engine coolant temperature, then the dimensionless temperature was correlated as a function of spark angle and engine Reynolds number. The results indicate that once the temperature is known at a given speed and load condition for any one cylinder, the temperature at other speed and load conditions can be reasonably estimated.
Technical Paper

Development of a One-Dimensional Engine Thermal Management Model to Predict Piston and Oil Temperatures

2011-04-12
2011-01-0647
A new, 1-D analytical engine thermal management tool was developed to model piston, oil and coolant temperatures in the Ford 3.5L engine family. The model includes: a detailed lubrication system, including piston oil-squirters, which accurately represents oil flow rates, pressure drops and component heat transfer rates under non-isothermal conditions; a detailed coolant system, which accurately represents coolant flow rates, pressure drops and component heat transfer rates; a turbocharger model, which includes thermal interactions with coolant, oil, intake air and exhaust gases (modeled as air), and heat transfer to the surroundings; and lumped thermal models for engine components such as block, heads, pistons, turbochargers, oil cooler and cooling tower. The model was preliminarily calibrated for the 3.5L EcoBoost™ engine, across the speed range from 1500 to 5500 rpm, using wide-open-throttle data taken from an early heat rejection study.
Technical Paper

Durable Coating Technology for Lunar Dust Protection and Mitigation

2006-07-17
2006-01-2205
Special coatings are being developed and tested to contend with the effects of dust on the lunar surface. These coatings will have wide applicability ranging from prevention of dust buildup on solar arrays and radiator surfaces to protection of EVA space suit fabrics and visors. They will be required to be durable and functional based on application. We have started preparing abrasion-resistant transparent conductive coatings ∼40 nm thick were formed by co-deposition of titanium dioxide (TiO2) and titanium (Ti) on room-temperature glass and polycarbonate substrates using two RF magnetron sputtering sources. By adjusting Ti content, we obtained sheet resistivities in the range 104-1010 ohms/square. We have also started conducting a series of environmental tests that simulate the exposure of coated samples to dust under relevant conditions, beginning with abrasion tests using regolith simulant materials.
Technical Paper

TiAl-Based Alloys for Exhaust Valve Applications

1993-03-01
930620
The recent development of TiAl-based alloys by the aerospace community has provided an excellent material alternative for hot components in automotive engines. The low density combined with an elevated temperature strength similar to that of Ni-base superalloys make TiAl-based alloys very attractive for exhaust valve applications. Lighter weight valvetrain components improve performance and permit the use of lower valve spring loads which reduce noise and friction and enhance fuel economy. However, difficult fabricability and a perception that TiAl alloys are high cost, low volume aerospace materials must be overcome in order to permit consideration for use in high-volume automotive applications. This paper provides a comparison of properties for several exhaust valve alternative materials. The density of TiAl alloys is lower than Ti alloys with creep and fatigue properties equivalent to IN-751, a current high performance exhaust valve material.
Technical Paper

The Effect of Valve Overlap on Idle Operation: Comparison of Model and Experiment

1993-10-01
932751
Validation of the Ford General Engine SIMulation program (GESIM) with measured firing data from a modified single cylinder Ricardo HYDRA research engine is described. GESIM predictions for peak cylinder pressure and burn duration are compared to test results at idle operating conditions over a wide range of valve overlap. The calibration of GESIM was determined using data from only one representative world-wide operating point and left unchanged for the remainder of the study. Valve overlap was varied by as much as 36° from its base setting. In most cases, agreement between model and data was within the accuracy of the measurements. A cycle simulation computer model provides the researcher with an invaluable tool for acquiring insight into the thermodynamic and fluid mechanical processes occurring in the cylinder of an internal combustion engine.
Technical Paper

Impact of Computer Aided Engineering on Ford Motor Company Light Truck Cooling Design and Development Processes

1993-11-01
932977
This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
Technical Paper

Impact of Computer Aided Engineering on Ford Light Truck Cooling Design and Development Processes

1993-04-01
931104
This paper presents the benefits of following a disciplined thermal management process during the design and development of Ford Light Truck engine cooling systems. The thermal management process described has evolved through the increased use of Computer Aided Engineering (CAE) tools. The primary CAE tool used is a numerical simulation technique within the field of Computational Fluid Dynamics (CFD). The paper discusses the need to establish a heat management team, develop a heat management model, construct a three dimensional CFD model to simulate the thermal environment of the engine cooling system, and presents CFD modeling examples of Ford Light Trucks with engine driven cooling fans.
Technical Paper

A Flow Network Approach to Vehicle Underhood Heat Transfer Problem

1993-04-01
931073
A flow network method was developed to predict the underhood temperature distribution of an automobile. The method involves the solution of simplified energy and momentum equations of the air flow in control volumes defined by subdividing the air space between the surfaces of the underhood components and the front-end geometry. The control volumes are interconnected by ducts with branches and bends to form a flow network. Conservation of mass and momentum with appropriate pressure-loss coefficients leads to a system of algebraic equations to be solved for the flow rates through each volume. The computed flow rates are transferred to a thermal model to calculate the temperatures of the air and the major vehicle components that affect the underhood environment. The method was applied to a 1986 3.0L Taurus and compared with vehicle experiments conducted in a windtunnel.
Technical Paper

Determination of the Effects of Inlet Air Velocity and Temperature Distributions on the Performance of an Automotive Radiator

1994-03-01
940771
In an automotive engine cooling system, the heat rejected to the coolant by the engine and other components is transferred to the air by the radiator. The cooling system engineer must predict the coolant inlet temperature (the top water temperature) for each operating conditions of interest. Computational fluid dynamics (CFD) computer programs have been developed to predict the cooling air flow velocities and temperatures entering the radiator. Radiator effectiveness is measured on a calorimeter with uniform air velocity and temperature entering the radiator. Computer programs have been developed to predict calorimeter performance for new radiators based on experimental data from existing components. In applying the calorimeter performance model to a vehicle, some means must be used to derate the performance slightly based on the non-uniform inlet air velocity and temperature distribution entering the radiator.
Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

1995-02-01
950159
The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

Compression Ratio and Coolant Temperature Effects on HC Emissions from a Spark- Ignition Engine

1995-02-01
950163
Modern four-valve engines are running at ever higher compression ratios in order to improve fuel efficiency. Hotter cylinder bores also can produce increased fuel economy by decreasing friction due to less viscous oil layers. In this study changes in compression ratio and coolant temperature were investigated to quantify their effect on exhaust emissions. Tests were run on a single cylinder research engine with a port-deactivated 4-valve combustion chamber. Two compression ratios (9.15:1 and 10.0:1) were studied at three air/fuel ratios (12.5, 14.6 and 16.5) at a part load condition (1500 rpm, 3.8 bar IMEP). The effect of coolant temperature (66 °C and 108°C) was studied at the higher compression ratio. The exhaust was sampled and analyzed for both total and speciated hydrocarbons. The speciation analysis provided concentration data for hydrocarbons present in the exhaust containing twelve or fewer carbon atoms.
Technical Paper

Modeling of Engine-Out Hydrocarbon Emissions for Prototype Production Engines

1995-02-01
950984
A model has been developed which predicts engine-out hydrocarbon (HC) emissions for spark-ignition engines. The model consists of a set of scaling laws that describe the individual processes that contribute to HC emissions. The model inputs are the critical engine design and operating variables. This set of individual process scaling relations was then calibrated using production spark-ignition engine data at a fixed light-load operating point. The data base consisted of engine-out HC emissions from two-valve and four-valve engine designs with variations in spark timing, valve timing, coolant temperature, crevice volume, and EGR, for five different engines. The model was calibrated separately for the three different engines to accommodate differences in engine design details and to determine the relative magnitudes of each of the major sources. A good fit to this database was obtained.
Technical Paper

Underhood Thermal Management by Controlling Air Flow

1995-02-01
951013
A series of tests were conducted to determine the potential for reducing vehicle underhood temperatures by either 1) diverting the radiator fan air flow from the engine compartment or 2) by forced air cooling of the exhaust manifold in conjunction with shielding it or 3) by a combination of the two methods. The test vehicle was a Ford F-250 Light Truck with a 7.5L V-8 engine. The vehicle was tested in a dynamometer cell equipped with cell blowers to simulate road speed conditions. It was found that diverting the outlet air from the radiator will reduce underhood component temperatures when the vehicle is in motion and also at normal idle. However, if the vehicle is to be used for power takeoff applications requiring a “kicked” idle, then forced cooling of the exhaust manifolds is also required to maintain reduced underhood temperatures. A combination of these two techniques maximized the reduction of underhood temperatures for all operating conditions tested.
X