Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Journal Article

Development and Validation of a Real-Time Model for the Simulation of the Heat Release Rate, In-Cylinder Pressure and Pollutant Emissions in Diesel Engines

2016-01-15
2015-01-9044
A real-time mean-value engine model for the simulation of the HRR (heat release rate), in-cylinder pressure, brake torque and pollutant emissions, including NOx and soot, has been developed, calibrated and assessed at both steady-state and transient conditions for a Euro 6 1.6L GM diesel engine. The chemical energy release has been simulated using an improved version of a previously developed model that is based on the accumulated fuel mass approach. The in-cylinder pressure has been evaluated on the basis of the inversion of a single-zone model, using the net energy release as input. The latter quantity was derived starting from the simulated chemical energy release, and evaluating the heat transfer of the charge with the walls. NOx and soot emissions were simulated on the basis of semi-empirical correlations that take into account the in-cylinder thermodynamic properties, the chemical energy release and the main engine parameters.
Journal Article

Cycle-by-Cycle Analysis of Cold Crank-Start in a GDI Engine

2016-04-05
2016-01-0824
The first 3 cycles in the cold crank-start process at 20°C are studied in a GDI engine. The focus is on the dependence of the HC and PM/PN emissions of each cycle on the injection strategy and combustion phasing of the current and previous cycles. The PM/PN emissions per cycle decrease by more than an order of magnitude as the crank-start progresses from the 1st to the 3rd cycle, while the HC emissions stay relatively constant. The wall heat transfer, as controlled by the combustion phasing, during the previous cycles has a more significant influence on the mixture formation process for the current cycle than the amount of residual fuel. The results show that the rise in HC emissions caused by the injection spray interacting with the intake valves and piston crown is reduced as the cranking process progresses. Combustion phasing retard significantly reduces the PM emission. The HC emissions, however, are relatively not sensitive to combustion phasing in the range of interest.
Journal Article

Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine

2017-09-04
2017-24-0021
One of the key technologies for the improvement of the diesel engine thermal efficiency is the reduction of the engine heat transfer through the thermal insulation of the combustion chamber. This paper presents a numerical investigation on the effects of the combustion chamber insulation on the heat transfer, thermal efficiency and exhaust temperatures of a 1.6 l passenger car, turbo-charged diesel engine. First, the complete insulation of the engine components, like pistons, liner, firedeck and valves, has been simulated. This analysis has showed that the piston is the component with the greatest potential for the in-cylinder heat transfer reduction and for Brake Specific Fuel Consumption (BSFC) reduction, followed by firedeck, liner and valves. Afterwards, the study has been focused on the impact of different piston Thermal Barrier Coatings (TBCs) on heat transfer, performance and wall temperatures.
Journal Article

Heat Transfer Performance of a Dual Latent Heat Sink for Pulsed Heat Loads

2008-11-11
2008-01-2928
This paper presents the concept of a dual latent heat sink for thermal management of pulse heat generating electronic systems. The focus of this work is to verify the effectiveness of the concept during charging through experimentation. Accordingly, custom components were built and a prototype version of the heat sink was fabricated. Experiments were performed to investigate the implementation feasibility and heat transfer performance. It is shown that this heat sink is practicable and helps in arresting the system temperature rise during charging (period of pulse heat load).
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Technical Paper

Development and Demonstration of a Prototype Free Flight Cockpit Display of Traffic Information

1997-10-01
975554
Two versions of a prototype Free Flight cockpit situational display (Basic and Enhanced) were examined in a simulation at the NASA Ames Research Center. Both displays presented a display of traffic out to a range of 120 NM, and an alert when the automation detected a substantial danger of losing separation with another aircraft. The task for the crews was to detect and resolve threats to separation posed by intruder aircraft. An Enhanced version of the display was also examined. It incorporated two additional conflict alerting levels and tools to aid in trajectory prediction and path planning. Ten crews from a major airline participated in the study. Performance analyses and pilot debriefings showed that the Enhanced display was preferred, and that minimal separation between the intruder and the ownship was larger with the Enhanced display. In addition, the additional information on the Enhanced display did not lead crews to engage in more maneuvering.
Technical Paper

The Mars Gravity Biosatellite: Atmospheric Reconditioning Strategies for Extended-Duration Rodent Life Support

2007-07-09
2007-01-3224
We present results which verify the design parameters and suggest performance capabilities/limitations of the Mars Gravity Biosatellite's proposed atmospherics control subassembly. Using a combination of benchtop prototype testing and analytic techniques, we derive control requirements for ammonia. Further, we demonstrate the dehumidification performance of our proposed partial gravity condensing heat exchanger. Ammonia production is of particular concern in rodent habitats. The contaminant is released following chemical degradation of liquid waste products. The rate of production is linked to humidity levels and to the design of habitat modules in terms of bedding substrate, air flow rates, choice of structural materials, and other complex factors. Ammonia buildup can rapidly lead to rodent health concerns and can negatively impact scientific return.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
Technical Paper

The Mars Gravity Biosatellite: Thermal Design Strategies for a Rotating Partial Gravity Spacecraft

2007-07-09
2007-01-3078
A rotating spacecraft which encloses an atmospheric pressure vessel poses unique challenges for thermal control. In any given location, the artificial gravity vector is directed from the center to the periphery of the vehicle. Its local magnitude is determined by the mathematics of centripetal acceleration and is directly proportional to the radius at which the measurement is taken. Accordingly, we have a system with cylindrical symmetry, featuring microgravity at its core and increasingly strong gravity toward the periphery. The tendency for heat to move by convection toward the center of the craft is one consequence which must be addressed. In addition, fluid flow and thermal transfer is markedly different in this unique environment. Our strategy for thermal control represents a novel approach to address these constraints. We present data to theoretically and experimentally justify design decisions behind the Mars Gravity Biosatellite's proposed payload thermal control subassembly.
Technical Paper

Rapid Compression Machine Measurements of Ignition Delays for Primary Reference Fuels

1990-02-01
900027
A rapid compression machine for chemical kinetic studies has been developed. The design objectives of the machine were to obtain: 1)uniform well-defined core gas; 2) laminar flow condition; 3) maximum ratio of cooling to compression time; 4) side wall vortex containment; and, 5) minimum mechanical vibration. A piston crevice volume was incorporated to achieve the side wall vortex containment. Tests with inert gases showed the post-compression pressure matched with the calculated laminar pressure indicating that the machine achieved these design objectives. Measurements of ignition delays for homogeneous PRF/O2/N2/Ar mixture in the rapid compression machine have been made with five primary reference fuels (ON 100, 90, 75, 50, and 0) at an equivalence ratio of 1, a diluent (s)/oxygen ratio of 3.77, and two initial pressures of 500 Torr and 1000 Torr. Post-compression temperatures were varied by blending Ar and N2 in different ratios.
Technical Paper

Investigation of the Dilution Process for Measurement of Particulate Matter from Spark-Ignition Engines

1998-10-19
982601
Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C.
Technical Paper

Enabling Much Higher Power Densities in Aerospace Power Electronics with High Temperature Evaporative Spray Cooling

2008-11-11
2008-01-2919
A power electronics module was equipped with an evaporative spray cooling nozzle assembly that served to remove waste heat from the silicon devices. The spray cooling nozzle assembly took the place of the standard heat sink, which uses single phase convection. The purpose of this work was to test the ability of spray cooling to enable higher power density in power electronics with high temperature coolant, and to be an effective and lightweight system level solution to the thermal management needs of aerospace vehicles. The spray cooling work done here was with 95 °C water, and this data is compared to 100 °C water/ propylene glycol spray cooling data from a previous paper so as to compare the spray cooling performance of a single component liquid to that of a binary liquid such as WPG. The module used during this work was a COTS module manufactured by Semikron, Inc., with a maximum DC power input of 180 kW (450 VDC and 400 A).
Technical Paper

Heat Transfer Characteristics of the Concentric Disk inside the WFRD Evaporator for the VPCAR Water Recovery System

2009-07-12
2009-01-2487
We consider the heat transfer characteristics of an ideal concentric disk used in the Wiped-Film Rotating-Disk (WFRD) evaporator for the Vapor Phase Catalytic Ammonia Removal (VPCAR) water recovery system. A mathematical model is derived to predict the radial temperature distribution and its average over the surface of the disk as a function of system parameters. The model shows self-similarity of the temperature distribution and the existence of a dimensionless parameter S (ratio of heat flux to convection) that can be used as a criterion to optimize the thermal characteristics of the disk in order to approach uniform surface temperature. Comparison of the model to experimental data using global (infrared imager) and local (resistive temperature devices) measurements shows that agreement with the model depends on the ambient condition denoted by the local heat transfer coefficient.
Technical Paper

Dynamic Model of a Load-Following Fuel Cell Vehicle: Impact of the Air System

2002-03-04
2002-01-0100
Fuel cell vehicles promise to become, in near future, competitive with conventional cars in terms of performance, efficiency and compliance with emission reduction schedules. However, many steps still have to be done, and a series of fundamental choices, such as high vs. low air pressure system options remain unresolved. Modeling can be a powerful instrument to evaluate different components or plant layout, and to predict the dynamic behavior of a fuel cell system. The first part of this paper illustrates the implementation of a direct engineering dynamic model of a load-following fuel cell vehicle. The modeling techniques, assumptions and basic equations are explained for each subsystem, with special attention to the air supply system, whose dynamic simulation was one of the primary targets of this work. Some of the simulation results are presented in the second part.
Technical Paper

HUD Symbology for Surface Operations: Command Guidance vs. Situation Guidance Formats

2002-11-05
2002-01-3006
This study investigated pilots' taxi performance, situation awareness and workload while taxiing with three different head-up display (HUD) symbology formats: Command-guidance, Situation-guidance and Hybrid. Command-guidance symbology provided the pilot with required control inputs to maintain centerline position; Situation-guidance symbology provided conformal, scene-linked navigation information; while the Hybrid symbology combined elements of both symbologies. Taxi speed, centerline tracking accuracy, workload and situation awareness were assessed. Taxi speed, centerline accuracy, and situation awareness were highest and workload lowest with Situation-guidance and Hybrid symbologies. These results are thought to be due to cognitive tunneling induced by the Command-guidance symbology. The conformal route information of the Situation-guidance and Hybrid HUD formats provided a common reference with the environment, which may have supported better distribution of attention.
Technical Paper

Thermal Design in Diode Array Packaging

2002-10-29
2002-01-3261
Effective thermal management and removal of the waste heat generated at diode arrays is critical to the development of high-power solid-state lasers. Thermal design must be considered in the packaging of these arrays. Two different packages with heat dissipation through spray cooling are evaluated experimentally and numerically. Their overall performance is compared with other packaging configurations using different heat removal approaches. A novel packaging design is proposed that can fulfill the requirements of low thermal resistance, temperature uniformity among emitters in the diode array, low coolant flow rate, simplicity and low assembly cost. The effect of temperature uniformity on the pumping efficiency for gain media is examined for our novel packaging design. The thermal stress induced by temperature variation within an emitter is also considered.
Technical Paper

A Methodology for Modeling the Cat-Heating Transient Phase in a Turbocharged Direct Injection Spark Ignition Engine

2017-09-04
2017-24-0010
This paper presents the modeling of the transient phase of catalyst heating on a high-performance turbocharged spark ignition engine with the aim to accurately predict the exhaust thermal energy available at the catalyst inlet and to provide a “virtual test rig” to assess different design and calibration options. The entire transient phase, starting from the engine cranking until the catalyst warm-up is completed, was taken into account in the simulation, and the model was validated using a wide data-set of experimental tests. The first step of the modeling activity was the combustion analysis during the transient phase: the burn rate was evaluated on the basis of experimental in-cylinder pressure data, considering both cycle-to-cycle and cylinder-to-cylinder variations.
Technical Paper

Numerical Simulation of the Warm-Up of a Passenger Car Diesel Engine Equipped with an Advanced Cooling System

2016-04-05
2016-01-0555
The target for future cooling systems is to control the fluid temperatures and flows through a demand oriented control of the engine cooling to minimize energy demand and to achieve comfort, emissions, or service life advantages. The scope of this work is to create a complete engine thermal model (including both cooling and lubrication circuits) able to reproduce engine warm up along the New European Driving Cycle in order to assess the impact of different thermal management concepts on fuel consumption. The engine cylinder structure was modeled through a finite element representation of cylinder liner, piston and head in order to simulate the cylinder heat exchange to coolant or oil flow circuits and to predict heat distribution during transient conditions. Heat exchanges with other components (EGR cooler, turbo cooler, oil cooler) were also taken into account.
X