Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

The Computed Structure of a Combusting Transient Jet Under Diesel Conditions

1998-02-23
981071
Numerical computations of combusting transient jets are performed under diesel-like conditions. Discussions of the structure of such jets are presented from global and detailed points of view. From a global point of view, we show that the computed flame heights agree with deductions from theory and that integrated soot mass and heat release rates are consistent with expected trends. We present results of several paramaters which characterise the details of the jet structure. These are fuel mass fractions, temperature, heat release rates, soot and NO. Some of these parameters are compared with the structure of a combusting diesel spray as deduced from measurements and reported in the literature. The heat release rate contours show that the region of chemical reactions is confined to a thin sheet as expected for a diffusion flame. The soot contour plots appear to agree qualitatively with the experimental observations.
Technical Paper

Engine Wear Modeling with Sensitivity to Lubricant Chemistry: A Theoretical Framework

2007-04-16
2007-01-1566
The life of an automotive engine is often limited by the ability of its components to resist wear. Zinc dialkyldithiophosphate (ZDDP) is an engine oil additive that reduces wear in an engine by forming solid antiwear films at points of moving contact. The effects of this additive are fairly well understood, but there is little theory behind the kinetics of antiwear film formation and removal. This lack of dynamic modeling makes it difficult to predict the effects of wear at the design stage for an engine component or a lubricant formulation. The purpose of this discussion is to develop a framework for modeling the formation and evolution of ZDDP antiwear films based on the relevant chemical pathways and physical mechanisms at work.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

Influence of Wall Impingement on the Structure of Reacting Jets

2003-03-03
2003-01-1042
In Diesel engines, the vapor phase of the fuel jet is known to impinge on the walls. This impingement is likely to have an effect on mixing characteristics, the structure of the diffusion flame and on pollutant formation and oxidation. These effects have not been studied in detail in the literature. In this work, the structure of a laminar wall jet that is generated from the impingement of a free laminar jet on a wall is discussed. We study the laminar jet with the belief that the local structure of the reaction zone in the turbulent reacting jet is that of a laminar flame. Results from non-reacting and reacting jets will be presented. In the case of the non-reacting jets, the focus of the inquiry is on assessing the accuracy of the computed results by comparing them with analytical results. Velocity profiles in the wall jet, growth rates of the half-width of the jet and penetration rates are presented.
Technical Paper

Lab Study of Urea Deposit Formation and Chemical Transformation Process of Diesel Aftertreatment System

2017-03-28
2017-01-0915
Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
Technical Paper

Chemical Kinetic Modeling of the Oxidation of Unburned Hydrocarbons

1992-10-01
922235
The chemistry of unburned hydrocarbon oxidation in SI engine exhaust was modeled as a function of temperature and concentration of unburned gas for lean and rich mixtures. Detailed chemical kinetic mechanisms were used to model isothermal reactions of unburned fuel/air mixture in an environment of burned gases at atmospheric pressure. Simulations were performed using five pure fuels (methane, ethane, propane, n-butane and toluene) for which chemical kinetic mechanisms and steady state hydrocarbon (HC) emissions data were available. A correlation is seen between reaction rates and HC emissions for different fuels. Calculated relative amounts of intermediate oxidation products are shown to be consistent with experimental measurements.
Technical Paper

Auto-Oil Program Phase II Heavy Hydrocarbon Study: Fuel Species Oxidation Chemistry and Its Relationship to the Auto-Oil Data

1994-10-01
941970
The oxidation chemistry of paraffins, aromatics, olefins and MTBE were examined. Detailed chemical kinetics calculations were carried out for oxidation of these compounds in the engine cycle. The oxidation rates are very sensitive to temperature. At temperatures of over 1400 K (depending on the fuel), all the hydrocarbons are essentially oxidized for typical residence time in the engine. Based on the kinetics calculations, a threshold temperature is defined for the conversion of the fuel species to CO, CO2, H2O and partially oxidized products. The difference in the survival fraction between aromatics and non-aromatics is attributed to the higher threshold temperature of the aromatics.
Technical Paper

Urine Processing for Water Recovery via Freeze Concentration

2005-07-11
2005-01-3032
Resource recovery, including that of urine water extraction, is one of the most crucial aspects of long-term life support in interplanetary space travel. This paper will consequently examine an innovative approach to processing raw, undiluted urine based on low-temperature freezing. This strategy is uniquely different from NASA's current emphasis on either ‘integrated’ (co-treatment of mixed urine, grey, and condensate waters) or ‘high-temperature’ (i.e., VCD [vapor compression distillation] or VPCAR [vapor phase catalytic ammonia removal]) processing strategies, whereby this liquid freeze-thaw (LiFT) procedure would avoid both chemical and microbial cross-contamination concerns while at the same time securing highly desirable reductions in likely ESM levels.
Technical Paper

IGNITION OF FUELS BY RAPID COMPRESSION

1950-01-01
500178
THE autoignition characteristics of several fuels under various conditions of mixture strength, compression ratio, and temperature have been studied by means of a rapid-compression machine. The behaviors of a knock inhibitor, tetraethyl lead, and a knock inducer, ethyl nitrite, have also been studied. Simultaneous records of pressure, volume, and the inflammation have been obtained. These records show the diverse aspects of the autoignition phenomenon and indicate, among other things, according to the authors, that a comparison of the detonating tendencies of fuels must include not only a consideration of the length of the delay period but also an evaluation of the rate of pressure rise during autoignition. Physical interpretations of the data are presented but chemical interpretations have been avoided. The work was exploratory in nature. The authors hope that the results will stimulate activity in this important branch of combustion research.
Journal Article

Graphene Coating as a Corrosion Protection Barrier for Metallic Terminals in Automotive Environments

2021-04-06
2021-01-0354
Inside an automobile, hundreds of connectors and electrical terminals in various locations experience different corrosive environments. These connectors and electrical terminals need to be corrosion-proof and provide a good electrical contact for a vehicle’s lifetime. Saltwater and sulfuric acid are some of the main corrosion concerns for these electrical terminals. Currently, various thin metallic layers such as gold (Au), silver (Ag), or tin (Sn) are plated with a nickel (Ni) layer on copper alloy (Cu) terminals to ensure reliable electrical conduction during service. Graphene due to its excellent chemical stability can serve as a corrosion protective layer and prevent electrochemical oxidation of metallic terminals. In this work, effects of thin graphene layers grown by plasma-enhanced chemical vapor deposition (PECVD) on Au and Ag terminals and thin-film devices were investigated. Various mechanical, thermal/humidity, and electrical tests were performed.
Journal Article

The Underlying Physics and Chemistry behind Fuel Sensitivity

2010-04-12
2010-01-0617
Recent studies have shown that for a given RON, fuels with a higher sensitivity (RON-MON) tend to have better antiknock performance at most knock-limited conditions in modern engines. The underlying chemistry behind fuel sensitivity was therefore investigated to understand why this trend occurs. Chemical kinetic models were used to study fuels of varying sensitivities; in particular their autoignition delay times and chemical intermediates were compared. As is well known, non-sensitive fuels tend to be paraffins, while the higher sensitivity fuels tend to be olefins, aromatics, diolefins, napthenes, and alcohols. A more exact relationship between sensitivity and the fuel's chemical structure was not found to be apparent. High sensitivity fuels can have vastly different chemical structures. The results showed that the autoignition delay time (τ) behaved differently at different temperatures. At temperatures below 775 K and above 900 K, τ has a strong temperature dependence.
X