Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Journal Article

Effect of Thermal Exposure Time on the Relaxation of Residual Stress in High Pressure Die Cast AM60

2016-04-05
2016-01-0423
Magnesium alloys are becoming more commonly used for large castings with sections of varying thicknesses. During subsequent processing at elevated temperatures, residual stresses may relax and become a potential mechanism for part distortion. This study was conducted to quantify the effects of thermal exposure on residual stresses and relaxation in a high pressure die cast magnesium (AM60) alloy. The goal was to characterize relaxation of residual stresses at temperatures that are commonly experienced by body components during a typical paint bake cycle. A residual stress test sample design and quench technique developed for relaxation were used and a relaxation study was conducted at two exposure temperatures (140°C and 200°C) over a range of exposure times (0.25 to 24 hours). The results indicate that a significant amount of residual stress relaxation occurred very rapidly during exposure at both exposure temperatures.
Journal Article

Side Impact Pressure Sensor Predictions with Computational Gas and Fluid Dynamic Methods

2017-03-28
2017-01-0379
Three computational gas and fluid dynamic methods, CV/UP (Control Volume/Uniform Pressure), CPM (Corpuscular Particle Method), and ALE (Arbitrary Lagrangian and Eulerian), were investigated in this research in an attempt to predict the responses of side crash pressure sensors. Acceleration-based crash sensors have been used extensively in the automotive industry to determine the restraint system firing time in the event of a vehicle crash. The prediction of acceleration-based crash pulses by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crush zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side crash applications.
Journal Article

Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

2016-04-05
2016-01-0942
The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
Journal Article

Development and Application of Ring-Pack Model Integrating Global and Local Processes. Part 1: Gas Pressure and Dynamic Behavior of Piston Ring Pack

2017-03-28
2017-01-1043
A new ring pack model has been developed based on the curved beam finite element method. This paper describes the first part of this model: simulating gas pressure in different regions above piston skirt and ring dynamic behavior of two compression rings and a twin-land oil control ring. The model allows separate grid divisions to resolve ring structure dynamics, local force/pressure generation, and gas pressure distribution. Doing so enables the model to capture both global and local processes at their proper length scales. The effects of bore distortion, piston secondary motion, and groove distortion are considered. Gas flows, gas pressure distribution in the ring pack, and ring structural dynamics are coupled with ring-groove and ring-liner interactions, and an implicit scheme is employed to ensure numerical stability. The model is applied to a passenger car engine to demonstrate its ability to predict global and local effects on ring dynamics and oil transport.
Journal Article

CFD Driven Parametric Design of Air-Air Jet Pump for Automotive Carbon Canister Purging

2017-03-28
2017-01-1316
A jet pump (also known as ejector) uses momentum of a high velocity jet (primary flow) as a driving mechanism. The jet is created by a nozzle that converts the pressure head of the primary flow to velocity head. The high velocity primary flow exiting the nozzle creates low pressure zone that entrains fluid from a secondary inlet and transfers the total flow to desired location. For a given pressure of primary inlet flow, it is desired to entrain maximum flow from secondary inlet. Jet pumps have been used in automobiles for a variety of applications such as: filling the Fuel Delivery Module (FDM) with liquid fuel from the fuel tank, transferring liquid fuel between two halves of the saddle type fuel tank and entraining fresh coolant in the cooling circuit. Recently, jet pumps have been introduced in evaporative emission control system for turbocharged engines to remove gaseous hydrocarbons stored in carbon canister and supply it to engine intake manifold (canister purging).
Technical Paper

Responses of the THOR in Oblique Sled Impacts: Focus on Chest Deflection

2020-04-14
2020-01-0522
The National Highway Traffic Safety Administration (NHTSA) published a Request for Comments (RFC) on proposed changes to the New Car Assessment Program (NCAP) in 2015 and 2017. One potential change was the introduction of a frontal Oblique Impact (OI) crash test. The Test device for Human Occupant Restraint (THOR) in the front left seat was used in the proposed OI test. The motivations behind the current study were a) determine if OI sled tests can be simplified, b) study the sensitivity of the THOR chest deflection to the shoulder belt layout in OI and c) assess the NHTSA-proposed THOR thoracic injury risk curves. In the current study, eleven oblique sled impact tests were conducted. The environment was representative of a generic mid-sized sedan. The buck was mounted on a rigid plate that allowed the pre-test rotation of the buck relative to the sled axis. A generic mid-sized OI pulse was used. The pulse was applied in the longitudinal direction of the sled.
Journal Article

A Frontal Impact Taxonomy for USA Field Data

2008-04-14
2008-01-0526
An eight-group taxonomy was created to classify real-world frontal crashes from the Crashworthiness Data System (CDS) component of the National Automotive Sampling System (NASS). Three steps were taken to develop the taxonomy: (1) frontal-impact towaway crashes were identified by examining 1985-2005 model year light passenger vehicles with Collision Deformation Classification (CDC) data from the 1995-2005 calendar years of NASS; (2) case reviews, engineering judgments, and categorization assessments were conducted on these data to produce the eight-group taxonomy; and (3) two subsets of the NASS dataset were analyzed to assess the consistency of the resulting taxonomic-group frequencies. “Full-engagement” and “Offset” crashes were the most frequent crash types, each contributing approximately 33% to the total. The group identified as “D, Y, Z No-Rail” was the most over-represented crash type for vehicles with at least one seriously-injured occupant.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

Pressure Based Sensing Approach for Front Impacts

2011-04-12
2011-01-1443
This study demonstrates the use of pressure sensing technology to predict the crash severity of frontal impacts. It presents an investigation of the pressure change in the front structural elements (bumper, crush cans, rails) during crash events. A series of subsystem tests were conducted in the laboratory that represent a typical frontal crash development series and provided empirical data to support the analysis of the concept. The pressure signal energy at different sensor mounting locations was studied and design concepts were developed for amplifying the pressure signal. In addition, a pressure signal processing methodology was developed that relies on the analysis of the air flow behavior by normalizing and integrating the pressure changes. The processed signal from the pressure sensor is combined with the restraint control module (RCM) signals to define the crash severity, discriminate between the frontal crash modes and deploy the required restraint devices.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Spacelab Neurovestibular Hardware

1991-07-01
911566
A set of devices for measurement of human balance orientation and eye movements in weightlessness was developed for neurovestibular experiments on Spacelab. The experiments involve astronaut motion, limb position changes, and moving visual fields, measurements are made of eye movements, muscular activity and orientation perception. This joint US/Canadian research program represent a group of closely related experiments designed to investigate space motion sickness, any associated changes in otolith-mediated responses occurring during weightlessness, and the continuation of changes to postflight conditions. The otoliths are a component of the vestibular apparatus which is located in the middle ear. It is responsible for maintaining the body's balance. Gravitational pull on the otoliths causes them to constantly appraise the nervous system of the position of the head with respect to the direction of gravity.
Technical Paper

Three-Dimensional Simulations of Automotive Catalytic Converter Internal Flow

1991-02-01
910200
The three-dimensional non-reacting flow field inside a typical dual-monolith automotive catalytic converter was simulated using finite difference analysis. The monolithic brick resistance was formulated from the pressure gradient of fully developed laminar duct-flow and corrected for the entrance effect. This correlation was found to agree with experimental pressure drop data, and was introduced as an additional source term into the non-dimensional momentum governing equation within the brick. Flow distribution within the monolith was found to depend strongly on the diffuser performance, which is a complex function of flow Reynolds number, brick resistance, and inlet pipe length and bending angles. A distribution index was formulated to quantify the degree of non-uniformity at selected test cases covering ranges of flow conditions, brick types, and inlet conditions.
Technical Paper

Multi-Objective Restraint System Robustness and Reliability Design Optimization with Advanced Data Analytics

2020-04-14
2020-01-0743
This study deals with passenger side restraint system design for frontal impact and four impact modes are considered in optimization. The objective is to minimize the Relative Risk Score (RRS), defined by the National Highway Traffic Safety Administration (NTHSA)'s New Car Assessment Program (NCAP). At the same time, the design should satisfy various injury criteria including HIC, chest deflection/acceleration, neck tension/compression, etc., which ensures the vehicle meeting or exceeding all Federal Motor Vehicle Safety Standard (FMVSS) No. 208 requirements. The design variables include airbag firing time, airbag vent size, inflator power level, retractor force level. Some of the restraint feature options (e.g., some specific features on/off) are also considered as discrete design variables. Considering the local variability of input variables such as manufacturing tolerances, the robustness and reliability of nominal designs were also taken into account in optimization process.
Technical Paper

Mass Optimization of a Front Floor Reinforcement

2020-01-13
2019-36-0149
Optimization of heavy materials like steel, in order to create a lighter vehicle, it is a major goal among most automakers, since heavy vehicles simply cannot compete with a lightweight model's fuel economy. Thinking this way, this paper shows a case study where the Size Optimization technique is applied to a front floor reinforcement. The reinforcement is used by two different vehicles, a subcompact and a crossover Sport Utility Vehicle (SUV), increasing the problem complexity. The Size Optimization technique is supported by Finite Element Method (FEM) tools. FEM in Computer Aided Engineering (CAE) is a numerical method for solving engineering problems, and its use can help to optimize prototype utilization and physical testing.
Journal Article

Effect of Operation Strategy on First Cycle CO, HC, and PM/PN Emissions in a GDI Engine

2015-04-14
2015-01-0887
The impact of the operating strategy on emissions from the first combustion cycle during cranking was studied quantitatively in a production gasoline direct injection engine. A single injection early in the compression cycle after IVC gives the best tradeoff between HC, particulate mass (PM) and number (PN) emissions and net indicated effective pressure (NIMEP). Retarding the spark timing, it does not materially affect the HC emissions, but lowers the PM/PN emissions substantially. Increasing the injection pressure (at constant fuel mass) increases the NIMEP but also the PM/PN emissions.
Technical Paper

Biofidelity of Anthropomorphic Test Devices for Rear Impact

1997-11-12
973342
This study examines the biofidelity, repeatability, and reproducibility of various anthropomorphic devices in rear impacts. The Hybrid III, the Hybrid III with the RID neck, and the TAD-50 were tested in a rigid bench condition in rear impacts with ΔVs of 16 and 24 kph. The results of the tests were then compared to the data of Mertz and Patrick[1]. At a AV of 16 kph, all three anthropomorphic devices showed general agreement with Mertz and Patrick's data [1]. At a AV of 24 kph, the RID neck tended to exhibit larger discrepancies than the other two anthropomorphic devices. Also, two different RID necks produced significantly different moments at the occipital condyles under similar test conditions. The Hybrid III and the Hybrid III with the RID neck were also tested on standard production seats in rear impacts for a AV of 8 kph. Both the kinematics and the occupant responses of the Hybrid III and the Hybrid III with the RID neck differed from each other.
X