Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

IC-Engine Exhaust and Intake System Acoustic Source Characterization

2014-06-30
2014-01-2061
The paper gives an overview of techniques used for characterization of IC-engines as acoustic sources of exhaust and intake system noise. Some recent advances regarding nonlinear source models are introduced and discussed. To calculate insertion loss of mufflers or the level of radiated sound information about the engine as an acoustic source is needed. The source model used in the low frequency plane wave range is often the linear time invariant one-port model. The acoustic source data is obtained from experimental tests or from 1-D CFD codes describing the engine gas exchange process. The IC-engine is a high level acoustic source and in most cases not completely linear. It is therefore of interest to have models taking weak non-linearity into account while still maintaining a simple method for interfacing the source model with a linear frequency domain model for the attached exhaust or intake system.
Journal Article

NVH Integration of Twin Charger Direct Injected Gasoline Engine

2014-06-30
2014-01-2087
The increased focus and demands on the reduction of fuel consumption and CO2 requires the automotive industry to develop and introduce new and more energy efficient powertrain concepts. The extensive utilisation of downsizing concepts, such as boosting, leads to significant challenges in noise, vibration and harshness (NVH) integration. This is in conflict with the market expectation on the vehicle's acoustic refinement, which plays an increasingly important role in terms of product perception, especially in the premium or luxury segment. The introduction of the twin charger boosting system, i.e. combining super and turbo charging devices, enables downsizing/speeding in order to achieve improved fuel economy as well as short time-to-torque, while maintaining high driving dynamics. This concept requires also extensive consideration to NVH integration. The NVH challenges when integrating a roots type supercharger are very extensive.
Technical Paper

Modelling of Acoustic Resonators Using the Linearized Navier Stokes Equations

2016-06-15
2016-01-1821
To tune the acoustics of intake systems resonators are often used. A problem with this solution is that the performance of these resonators can be affected a lot by flow. First, for low frequencies (Strouhal-numbers) the acoustic induced vorticity across a resonator inlet opening will create damping, which can reduce the efficiency. Secondly, the vorticity across the opening can also change the end-correction (added mass) for the resonator, which can modify the resonance frequency. However, the largest problem that can occur is whistling. This happens since the vortex-sound interaction across a resonator opening for certain Strouhal-numbers will amplify incoming sound waves. A whistling can then be created if this amplified sound forms a feedback loop, e.g., via reflections from system boundaries or the resonator. To analyse this kind of problem it is necessary to have a model that allows for both sound and vorticity and their interaction.
Technical Paper

Inclusion of Upstream Turbulent Inflow Statistics to Numerically Acquire Proper Fan Noise Characteristics

2016-06-15
2016-01-1811
To obtain realistic noise characteristics from CAA studies of subsonic fans, it is important to prescribe properly constructed turbulent inflow statistics. This is frequently omitted; instead it is assumed that the stochastic characteristics of turbulence, absent at the initial stage, progressively develops as the rotor inflicts the flow field over time and hence that the sound generating mechanism governed by surface pressure fluctuations are asymptotically accounted for. That assumption violates the actual interplay taking place between an ingested flow field and the surface pressure fluctuations exerted by the blades producing noise. The aim of the present study is to examine the coupling effect between synthetically ingested turbulence to sound produced from a subsonic ducted fan. The steady state inflow parameters are mapped from a precursor RANS simulation onto the inflow boundaries of a reduced domain to limit the computational cost.
Technical Paper

Predicting Fluid Driven Whistles in Automotive Intake and Exhaust Systems

2016-06-15
2016-01-1820
This work explores how fluid driven whistles in complex automotive intake and exhaust systems can be predicted using computationally affordable tools. Whistles associated with unsteady shear layers (created over for example side branches or perforates in resonators) are studied using vortex sound theory; vorticity in the shear layer interacts with the acoustic field while being convected across the orifice. If the travel time of a hydrodynamic disturbance over the orifice reasonably matches a multiple of the acoustic period of an acoustic feedback system, energy is transferred from the flow field to the acoustic field resulting in a whistle. The actual amplitude of the whistle is set by non-linear saturation phenomena and cannot be predicted here, but the frequency and relative strength can be found. For this not only the mean flow and acoustic fields needs to be characterized separately, but also the interaction of the two.
Technical Paper

In-Duct Acoustic Source Data for Roots Blowers

2017-06-05
2017-01-1792
Increased demands for reduction of fuel consumption and CO2 emissions are driven by the global warming. To meet these challenges with respect to the passenger car segment the strategy of utilizing IC-engine downsizing has shown to be effective. In order to additionally meet requirements for high power and torque output supercharging is required. This can be realized using e.g. turbo-chargers, roots blowers or a combination of several such devices for the highest specific power segment. Both turbo-chargers and roots blowers can be strong sources of sound depending on the operating conditions and extensive NVH abatements such as resonators and encapsulation might be required to achieve superior vehicle NVH. For an efficient resonator tuning process in-duct acoustic source data is required. No published studies exists that describe how the gas exchange process for roots blowers can be described by acoustic sources in the frequency domain.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Acoustical Methods for Investigating Turbocharger Flow Instabilities

2013-05-13
2013-01-1879
In order to increase the internal combustion engine efficiency turbocharging is today widely used. The trend, in modern engine technology, is towards higher boost pressures while keeping the combustion pressure raise relatively small. The turbocharger surge occurs if the pressure at the outlet of the compressor is greater than it can maintain, i.e., a reverse flow will be induced. In presence of such flow conditions instabilities will occur which can couple to incident acoustic (pressure) waves and amplify them. The main objective of the present work is to propose a novel method for investigation of turbocharger flow instabilities or surge precursors. The method is based on the determination of the acoustic two-port data. The active part of this data describes the sound generation and the passive part the scattering of sound. The scattering data will contain information about flow-acoustic interaction and amplification of sound that could occur close to surge.
Technical Paper

Whistling Potential for Duct Components

2013-05-13
2013-01-1889
Components in ducts systems that create flow separation can for certain conditions and frequencies amplify incident sound waves. This vortex-sound phenomena is the origin for whistling, i.e., the production of tonal sound at frequencies close to the resonances of a duct system. One way of predicting whistling potential is to compute the acoustic power balance, i.e., the difference between incident and scattered sound power. This can readily be obtained if the scattering matrix is known for the object. For the low frequency plane wave case this implies knowledge of the two-port data, which can be obtained by numerical and experimental methods. In this paper the procedure to experimentally determine whistling potential will be presented and some examples are given to show how this procedure can be used in some applications for automotive intake and exhaust system components.
Technical Paper

An Experimental Study on Factors That Influence Encapsulation Efficiency

2022-06-15
2022-01-0958
Absorptive and isolating encapsulations or enclosures are commonly encountered around different noise-emitting components within the car industry. Not least for electric drive units, whose air borne noise shares often are dominant in the 2-6 kHz region, encapsulations can provide a cost and weight efficient noise abatement solution. The main constrains related to the acoustic performance when designing an encapsulation for electric drive units are surface coverage due to geometrical complexities, allowable package space (setting limits for maximum thickness of the encapsulation), weight and finally cost. The numerical simulation techniques for quantifying the acoustic performance in terms of insertion loss are challenging, since the encapsulations are partly compressed and far from homogeneous for example.
Technical Paper

A Novel Design for Cruiser Type Motorcycle Silencer Based on Micro-Perforated Elements

2012-10-23
2012-32-0109
Regulations stipulating the design of motorcycle silencers are strict, especially when the unit incorporates fibrous absorbing materials. Therefore, innovative designs substituting such materials while still preserving acceptable level of characteristic sound are currently of interest. Micro perforated elements are innovative acoustic solutions, which silencing effect is based on the dissipation of the acoustic wave energy in a pattern of sub-millimeter apertures. Similarly to fibrous materials the micro-perforated materials have been proved to provide effective sound absorption in a wide frequency range. Additionally, the silencer is designed as a two-stage system that provides an optimal solution for a variety of exploitation conditions. In this paper a novel design for a cruiser type motorcycle silencer, based on micro-perforated elements, is presented.
Technical Paper

Stop Whistling! A Note on Fluid Driven Whistles in Flow Ducts

2018-06-13
2018-01-1524
The generation mechanism and possible counter measures for fluid driven whistles in low Mach number flow duct networks are discussed. The vortex sound model, where unstable shear layers interact with the acoustic field and act as amplifiers under certain boundary conditions, is shown to capture the physics well. Further, for the system to actually whistle an acoustic feedback to the amplifying shear layer is also needed. The demonstration example in this study is a generalized resonator configuration with annular volumes attached to a straight flow duct via a number of small holes, perforations, around the duct’s circumference. At each hole a shear layer is formed and the acoustic reflections from the resonator volumes and the up and downstream sides provides a possible feedback to them. Not only the Helmholtz mode but also ring modes in the annular volumes provide a feedback to sustain whistles.
Technical Paper

Experimental Analysis on the ‘Exact’ Cremer Impedance in Rectangular Ducts

2018-06-13
2018-01-1523
Cremer impedance, first proposed by Cremer (Acustica 3, 1953) and then improved by Tester (JSV 28, 1973), refers to the locally reacting boundary condition that can maximize the attenuation of a certain acoustic mode in a uniform waveguide. One limitation in Tester’s work is that it simplified the analysis on the effect of flow by only considering high frequencies or the ‘well cut-on’ modes. This approximation is reasonable for large duct applications, e.g., aero-engines, but not for many other cases of interest, with the vehicle intake and exhaust system included. A recent modification done by Kabral et al. (Acta Acustica united with Acustica 102, 2016) has removed this limitation and investigated the ‘exact’ solution of Cremer impedance for circular waveguides, which reveals an appreciable difference between the exact and classic solution in the low frequency range. Consequently, the exact solution can lead to a much higher low-frequency attenuation level.
Technical Paper

A Steady-State Based Investigation of Automotive Turbocharger Compressor Noise

2018-06-13
2018-01-1528
The challenging problem of noise generation and propagation in automotive turbocharging systems is of real interest from both scientific and practical points of view. Robust and fast steady-state fluid flow calculations, complemented by acoustic analogies can represent valuable tools to be used for a quick assessment of the problem during e.g. design phase, and a starting point for more in-depth future unsteady calculations. Thus, as a part of the initial phase of a long-term project, a steady-state Reynolds Averaged Navier-Stokes (RANS) flow analysis is carried out for a specific automotive turbocharger compressor geometry. Acoustic data are extracted by means of aeroacoustics models available within the framework of the STAR-CCM+ solver (i.e. Curle and Proudman acoustic analogies, respectively).
Technical Paper

Acoustic Simulation of Medium Speed IC-Engine Exhaust Gas After Treatment Devices with Substrate

2014-06-30
2014-01-2057
The after treatment devices (ATD) used in internal combustion engine (IC-engine) exhaust systems are mainly designed with emphasis on emission control, i.e. chemical efficiency, while paying less attention to the acoustic performance. In automotive applications, the duct diameters are so small that studying the acoustic wave propagation only in the plane wave frequency range is usually sufficient. In the case of medium speed IC-engines, used for example in power plants and ships, the three dimensional acoustic phenomena must also be taken into account. The main elements of the medium speed IC-engine ATD are the selective catalytic reducer (SCR) and oxidation catalyst (OC), which are based on a large amount of coated channels, i.e. the substrates. The number and type of the substrates depends not only on the regional environment legislations but also on the engine type.
Journal Article

Effects of Boundary Layer and Local Volumetric Cells Refinements on Compressor Direct Noise Computation

2022-06-15
2022-01-0934
The use of turbochargers with downsized internal combustion engines improves road vehicles’ energy efficiency but introduces additional sound sources of strong acoustic annoyance on the turbocharger’s compressor side. In the present study, direct noise computations (DNC) are carried out on a passenger vehicle turbocharger compressor. The work focuses on assessing the influence of grid parameters on the acoustic predictions, to further advance the maturity of the acoustic modelling of such machines with complex three-dimensional features. The effect of the boundary layer mesh structure, and of the spatial resolution of the mesh, on the simulated acoustic signatures is investigated on detached eddy simulations (DES). Refinements in the core mesh are applied in areas of major acoustic production, to generate cells with sizes proportional to the local Taylor microscale values.
X