Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Mathematical Analysis of Clutch Thermal Energy during Automatic Shifting Coupled with Input Torque Truncation

2020-04-14
2020-01-0967
A step-ratio automatic transmission alters torque paths for gearshifting through engagement and disengagement of clutches. It enables torque sources to run efficiently while meeting driver demand. Yet, clutch thermal energy during gearshifting is one of the contributors to the overall fuel loss. In order to optimize drivetrain control strategy, including the frequency of shifts, it is important to understand the cost of shift itself. In a power-on upshift, clutch thermal energy is primarily dissipated during inertia phase. The interaction between multiple clutches, coupled with input torque truncation, makes the decomposition of overall energy loss less obvious. This paper systematically presents the mathematical analysis of clutch thermal energy during the inertia phase of a typical single-transition gearshift. In practice, a quicker shift is generally favored, partly because the amount of energy loss is considered smaller.
Technical Paper

Uncertainty Quantification of Wet Clutch Actuator Behaviors in P2 Hybrid Engine Start Process

2022-03-29
2022-01-0652
Advanced features in automotive systems often necessitate the management of complex interactions between subsystems. Existing control strategies are designed for certain levels of robustness, however their performance can unexpectedly deteriorate in the presence of significant uncertainties, resulting in undesirable system behaviors. This limitation is further amplified in systems with complex nonlinear dynamics. Hydro-mechanical clutch actuators are among those systems whose behaviors are highly sensitive to variations in subsystem characteristics and operating environments. In a P2 hybrid propulsion system, a wet clutch is utilized for cranking the engine during an EV-HEV mode switching event. It is critical that the hydro-mechanical clutch actuator is stroked as quickly and as consistently as possible despite the existence of uncertainties. Thus, the quantification of uncertainties on clutch actuator behaviors is important for enabling smooth EV-HEV transitions.
Technical Paper

Optimization of Gaussian Process Regression Model for Characterization of In-Vehicle Wet Clutch Behavior

2022-03-29
2022-01-0222
The advancement of Machine-learning (ML) methods enables data-driven creation of Reduced Order Models (ROMs) for automotive components and systems. For example, Gaussian Process Regression (GPR) has emerged as a powerful tool in recent years for building a static ROM as an alternative to a conventional parametric model or a multi-dimensional look-up table. GPR provides a mathematical framework for probabilistically representing complex non-linear behavior. Today, GPR is available in various programing tools and commercial CAE packages. However, the application of GPR is system dependent and often requires careful design considerations such as selection of input features and specification of kernel functions. Hence there is a need for GPR design optimization driven by application requirements. For example, a moving window size for training must be tuned to balance performance and computational efficiency for tracking changing system behavior.
Technical Paper

Machine-Learning Approach to Behavioral Identification of Hybrid Propulsion System and Component

2022-03-29
2022-01-0229
Accurate determination of driveshaft torque is desired for robust control, calibration, and diagnosis of propulsion system behaviors. The real-time knowledge of driveshaft torque is also valuable for vehicle motion controls. However, online identification of driveshaft torque is difficult during transient drive conditions because of its coupling with vehicle mass, road grade, and drive resistance as well as the presence of numerous noise factors. A physical torque sensor such as a strain-gauge or magneto-elastic type is considered impractical for volume production vehicles because of packaging requirements, unit cost, and manufacturing investment. This paper describes a novel online method, referred to as Virtual Torque Sensor (VTS), for estimating driveshaft torque based on Machine-Learning (ML) approach. VTS maps a signal from Inertial Measurement Unit (IMU) and vehicle speed to driveshaft torque.
Technical Paper

Automatic Transmission Shift Control for Canceling Inertia Torque

2018-04-03
2018-01-1167
A step-ratio automatic transmission is a system of planetary gear sets, wet clutches, hydraulic control system and torque converter to provide the flexibility in gear ratio selection. Gearshifting is realized by the engagement and disengagement of clutches which are commanded by control strategy through the hydraulic actuators. A complex interaction between components results in transient drive shaft torque, affecting shift quality. In particular, it is difficult to achieve fast upshift without inducing a large inertia torque spike due to changing speed ratios. A deep understanding of the system kinematics and dynamics becomes critical to control clutches for fast and smooth gearshifting. This article performs detailed analytical study to explain the upshift behaviors of a 10-speed automatic transmission by deriving the system’s governing equations. These equations show insights of working principles of the transmission and provide a new method to improve shift quality.
Technical Paper

Real-Time Hydro-Mechanical Transmission System Simulations for Model-Guided Assessment of Complex Shift Sequence

2021-04-06
2021-01-0715
Model-guided development of drivetrain control and calibration is a key enabler of robust and efficient vehicle design process. A number of CAE tools are available today for modeling hydro-mechanical systems. Automatic transmission behaviors are well understood to effectively tune the model parameters for targeted applications. Drivetrain models provide physical insight for understanding the effects of component interactions on system behaviors. They are also widely used in HIL/SIL environments to debug control strategies. Nonetheless, it is still a challenge to predict shift quality, especially during a sequence of multiple events, with enough accuracy to support model-guided control design and calibration. The inclusion of hydraulic circuits in simulation models often results in challenges for numerical simulation.
Journal Article

An LQR Approach of Automatic Transmission Upshift Control Including Use of Off-Going Clutch within Inertia Phase

2020-04-14
2020-01-0970
This paper considers using linear quadratic regulation (LQR) for multi-input control of the Automatic Transmission (AT) upshift inertia phase. The considered control inputs include the transmission input/engine torque, oncoming clutch torque, and traditionally not used off-going clutch torque. Use of the off-going clutch has been motivated by discussed Control Trajectory Optimization (CTO) results demonstrating that employing the off-going clutch during the inertia phase along with the main, oncoming clutch can improve the upshift control performance in terms of the shift duration and/or comfort by trading off the transmission efficiency and control simplicity to some extent. The proposed LQR approach provides setting an optimal trade-off between the conflicting criteria related to driving comfort and clutches thermal energy loss.
Journal Article

Automatic Transmission Upshift Control Using a Linearized Reduced-Order Model-Based LQR Approach

2021-04-06
2021-01-0697
Automatic transmission (AT) upshift control performance in terms of shift duration and comfort can be improved during the inertia phase by coordinating the off-going clutch together with oncoming clutch and engine torque. The performance improvement is highest in low gear shifts (i.e., for high ratio steps), which are typically performed with open torque converter. In this paper, a discrete-time, linear quadratic regulation (LQR) is applied during the upshift inertia phase, as it provides an optimal multi-input/multi-output control action with respect to the prescribed cost function. The LQR law is based on a reduced-order drivetrain model, which is applicable to actual transmissions characterized by a limited number of available state measurements. The reduced-order model includes the linearized torque converter model. The shift duration is ensured by precise tracking of a linear-like oncoming clutch slip speed reference profile.
Journal Article

Machine Learning Approach for Constructing Wet Clutch Torque Transfer Function

2021-04-06
2021-01-0712
A wet clutch is an established component in a conventional powertrain. It also finds a new role in electrified systems. For example, a wet clutch is utilized to couple or decouple an internal combustion engine from an electrically-driven drivetrain on demand in hybrid electric vehicles. In some electrical vehicle designs, it provides a means for motor speed reduction. Wet clutch control for those new applications may differ significantly from conventional strategy. For example, actuator pressure may be heavily modulated, causing the clutch to exhibit pronounced hysteresis. The clutch may be required to operate at a very high slip speed for unforeseen behaviors. A linear transfer function is commonly utilized for clutch control in automating shifting applications, assuming that clutch torque is proportional to actuator pressure. However, the linear model becomes inadequate for enabling robust control when the clutch behavior becomes highly nonlinear with hysteresis.
X