Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

THE INTERSTATE HIGHWAY SYSTEM SUPER TRANSPORT TRUCK

1965-02-01
650160
This paper describes the design and build of an experimental super transport truck for high-speed, long distance freight hauling on the interstate highway system of the 1970's. The tractor, powered by a 600-hp gas turbine engine, pulls two 40-foot tandem axle trailers at a G.C.W. of 170,000 lbs. Details of the turbine engine development are covered in SAE paper, No. 991B. One of the features of the super transport truck is the cab, which is designed for long-distance, non-stop, two-man operation. It is provided with sleeping accommodations, washroom conveniences, food facilities, and a complete heating and air-conditioning system. The 13-foot high cab roof is flush with the top of the trailers, providing a substantial aerodynamic advantage. Other features and components of the truck are described, and observations made during the 5500-mile national tour are discussed.
Technical Paper

Comparative Analysis between American and European Requirements for Electronic Stability Control (ESC) Focusing on Commercial Vehicles

2019-09-15
2019-01-2141
Analysis of road accidents has shown that an important portion of fatal crashes involving Commercial Vehicles are caused by rollovers. ESC systems in Commercial Vehicles can reduce rollovers, severe understeer or oversteer conditions and minimize occurrences of jackknifing events. Several studies have estimated that this positive effect of ESC on road safety is substantial. In Europe, Electronic Stability Control (ESC) is expected to prevent by far the most fatalities and injuries: about 3,000 fatalities (-14%), and about 50,000 injuries (-6%) per year. In Europe, Electronic Stability Control Systems is mandatory for all vehicles (since Nov. 1st, 2011 for new types of vehicle and Nov. 1st, 2014 for all new vehicles), including Commercial Vehicles, Buses, Trucks and Trailers.
Technical Paper

Adaptive Nonlinear Model Predictive Cruise Controller: Trailer Tow Use Case

2017-03-28
2017-01-0090
Conventional cruise control systems in automotive applications are usually designed to maintain the constant speed of the vehicle based on the desired set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods namely adopting the Model Predictive Control (MPC) technology utilizing the road grade preview information and allowance of the vehicle speed variation. This paper is focused on the extension of the Adaptive Nonlinear Model Predictive Controller (ANLMPC) reported earlier by application to the trailer tow use-case. As the connected trailer changes the aerodynamic drag and the overall vehicle mass, it may lead to the undesired downshifts for the conventional cruise controller introducing the fuel economy losses. In this work, the ANLMPC concept is extended to avoid downshifts by translating the downshift conditions to the constraints of the underlying optimization problem to be solved.
X