Refine Your Search

Topic

Search Results

Technical Paper

The Influence of Impact Interface on Human Knee Injury: Implications for Instrument Panel Design and the Lower Extremity Injury Criterion

1997-11-12
973327
Injury to the lower extremity during an automotive crash is a significant problem. While the introduction of safety features (i.e. seat belts, air bags) has significantly reduced fatalities, lower extremity injury now occurs more frequently, probably for a variety of reasons. Lower extremity trauma is currently based on a bone fracture criterion derived from human cadaver impact experiments. These impact experiments, conducted in the 1960's and 70's, typically used a rigid impact interface to deliver a blunt insult to the 90° flexed knee. The resulting criterion states that 10 kN is the maximum load allowed at the knee during an automotive crash when certifying new automobiles using anthropomorphic dummies. However, clinical studies suggest that subfracture loading can cause osteochondral microdamage which can progress to a chronic and debilitating joint disease.
Technical Paper

Model Order Reduction Using Basis Expansions for Near field Acoustic Holography

2009-05-19
2009-01-2174
The identification/localization of propulsion noise in turbo machinery plays an important role in its design and in noise mitigation techniques. Near field acoustic holography (NAH) is the process by which all aspects of the sound field can be reconstructed based on sound pressure measurements in the near field domain. Identification of noise sources, particularly in turbo-machinery applications, efficiently and accurately is difficult due to complex noise generation mechanisms. Backward prediction of the sound field closer to the source than the measurement plane is typically an unstable “ill-posed” inverse problem due to the presence of measurement noise. Therefore regularized inversion techniques are typically implemented for noise source reconstruction. Another major source of ill-posedness in NAH inverse problems is a larger number of unknowns (sources) than available pressure measurements. A model reduction technique is proposed in this paper to address this issue.
Technical Paper

Development of Injury Criteria for Human Surrogates to Address Current Trends in Knee-to-Instrument Panel Injuries

1998-11-02
983146
Injuries to the lower extremities are common during car accidents because the lower extremity is typically the first point of contact between the occupant and the car interior. While injuries to the knee, ankle and hip are usually not life threatening, they can represent a large societal burden through treatment costs, lost work days and a reduced quality of life. The aim of the current study was to specifically study injuries associated with the knee and to propose a methodology which could be used to prevent future knee injuries. To understand the scope of this problem, a study was designed to identify injury trends in car crashes for the years 1979-1995. The NASS (National Accident Sampling System) showed that 10% of all injuries were to the knee, second only to head and neck injuries. Most knee injuries resulted from knee-to-instrument panel contact. Subfracture injuries were most common (contusions, abrasions, lacerations) followed by gross fracture injuries.
Technical Paper

Numerical Evaluation of A Methanol Fueled Directly-Injected Engine

2002-10-21
2002-01-2702
A numerical study on the combustion of Methanol in a directly injected (DI) engine was conducted. The study considers the effect of the bowl-in-piston (BIP) geometry, swirl ratio (SR), and relative equivalence ratio (λ), on flame propagation and burn rate of Methanol in a 4-stroke engine. Ignition-assist in this engine was accomplished by a spark plug system. Numerical simulations of two different BIP geometries were considered. Combustion characteristics of Methanol under swirl and no-swirl conditions were investigated. In addition, the amount of injected fuel was varied in order to determine the effect of stoichiometry on combustion. Only the compression and expansion strokes were simulated. The results show that fuel-air mixing, combustion, and flame propagation was significantly enhanced when swirl was turned on. This resulted in a higher peak pressure in the cylinder, and more heat loss through the cylinder walls.
Technical Paper

Numerical Investigation of the Impact of Nozzle Endwall Clearance Distribution on Variable Nozzle Turbine Performance

2017-03-28
2017-01-1034
As the variable nozzle turbine(VNT) becomes an important element in engine fuel economy and engine performance, improvement of turbine efficiency over wide operation range is the main focus of research efforts for both academia and industry in the past decades. It is well known that in a VNT, the nozzle endwall clearance has a big impact on the turbine efficiency, especially at small nozzle open positions. However, the clearance at hub and shroud wall sides may contribute differently to the turbine efficiency penalty. When the total height of nozzle clearance is fixed, varying distribution of nozzle endwall clearance at the hub and shroud sides may possibly generate different patterns of clearance leakage flow at nozzle exit that has different interaction with and impact on the main flow when it enters the inducer.
Technical Paper

Characterization of Crankcase Pressure Variation during the Engine Cycle of an Internal Combustion Engine

2017-03-28
2017-01-1088
High frequency variations in crankcase pressure have been observed in Inline-four cylinder (I4) engines and an understanding of the causes, frequency and magnitude of these variations is helpful in the design and effective operation of various engine systems. This paper shows through a review and explanation of the physics related to engine operation followed by comparison to measured vehicle data, the relationship between crankcase volume throughout the engine cycle and the observed pressure fluctuations. It is demonstrated that for a known or proposed engine design, through knowledge of the key engine design parameters, the frequency and amplitude of the cyclic variation in crankcase pressure can be predicted and thus utilized in the design of other engine systems.
Technical Paper

In-cylinder Combustion Visualization of a Direct-injection Spark-ignition Engine with Different Operating Conditions and Fuels

2012-09-10
2012-01-1644
A direct-injection and spark-ignition single-cylinder engine with optical access to the cylinder was used for the combustion visualization study. Gasoline and ethanol-gasoline blended fuels were used in this investigation. Experiments were conducted to investigate the effects of fuel injection pressure, injection timing and the number of injections on the in-cylinder combustion process. Two types of direct fuel injectors were used; (i) high-pressure production injector with fuel pressures of 5 and 10 MPa, and (ii) low-pressure production-intent injector with fuel pressure of 3 MPa. Experiments were performed at 1500 rpm engine speed with partial load. In-cylinder pressure signals were recorded for the combustion analyses and synchronized with the high-speed combustion imaging recording. Visualization results show that the flame growth is faster with the increment of fuel injection pressure.
Technical Paper

Numerical Simulations of Turbulent Sprays with a Multicomponent Evaporation Model

2013-04-08
2013-01-1603
A multicomponent droplet evaporation model which discretizes the one-dimensional mass and temperature profiles inside a droplet with a finite volume method has been developed and implemented into a large-eddy simulation (LES) model for spray simulations. The LES and multicomponent models were used along with the KH-RT secondary droplet breakup model to simulate realistic fuel sprays in a closed vessel. The effect of various spray and ambient gas parameters on the liquid penetration length of different single component and multicomponent fuels was investigated. The numerical results indicate that the spray penetration length decreases non-linearly with increasing gas temperature or pressure and is less sensitive to changes in ambient gas conditions at higher temperatures or pressures. The spray models and LES were found to predict the experimental results for n-hexadecane and two multicomponent surrogate diesel fuels reasonably well.
Technical Paper

Visual Sensor Fusion and Data Sharing across Connected Vehicles for Active Safety

2018-04-03
2018-01-0026
The development of connected-vehicle technology, which includes vehicle-vehicle and vehicle-infrastructure communications, opens the door for unprecedented active safety and driver-enhanced systems. In addition to exchanging basic traffic messages among vehicles for safety applications, a significantly higher level of safety can be achieved when vehicles and designated infrastructure-locations share their sensor data. In this paper, we propose a new system where cameras installed on multiple vehicles and infrastructure-locations share and fuse their visual data and detected objects in real-time. The transmission of camera data and/or detected objects (e.g., pedestrians, vehicles, cyclists, etc.) can be accomplished by many communication methods. In particular, such communications can be accomplished using the emerging Dedicated Short-Range Communications (DSRC) technology.
Technical Paper

Simulation of Torso Posture and Motion in Seating

1998-04-28
981304
Since the 1960's, automotive seats have been designed and evaluated with tools and procedures described in the SAE Recommended Practice J826. The SAE J826 design template and testing manikin each have a torso with a flat lower back shape and with a single joint at the H-point. The JOHN models provide a more anatomically detailed representation of human shape and movement. The articulations of the JOHN torso (pelvic, lumbar, and thoracic) segments are coupled so that their relative positions are determined by a single parameter related to spinal curvature. This paper describes the development and use of the JOHN biomechanical models for seating design.
Technical Paper

Development of Human Back Contours for Automobile Seat Design

1997-02-24
970590
Driver and passenger comfort, as related to automotive seats, is a growing issue in the automotive industry. As this trend continues, automotive seat designers and developers are generating a greater need for more anthropometrically accurate tools to aid them in their work. One tool being developed is the JOHN software program that utilizes three-dimensional solid objects to represent humans in seated postures. Contours have been developed to represent the outside skin surfaces of three different body types in a variety of postures in the sagittal plane. These body types include: the small female, the average male, and the large male.
Technical Paper

Establishment of a Database by Conducting Intake Manifold and In-Cylinder Flow Measurements inside an Internal Combustion Engine Assembly

2013-04-08
2013-01-0565
An experimental study has been conducted to quantify the velocity and pressure inside an idealized intake manifold of a motored internal combustion engine assembly. The aim of this work is to provide the real-time boundary conditions for more accurate multi-dimensional numerical simulations of complex in-cylinder flows in an internal combustion engine as well as the resultant in-cylinder flow patterns. The geometry of the intake manifold is simplified for this purpose. A hot-wire anemometer and a piezoresistive absolute pressure transducer are used to measure the velocity and pressure, respectively, over a plane inside the circular section of the intake manifold. In addition, pressure measurements are performed over an elliptical section near the intake port. Phase-averaged velocity and pressure profiles are then calculated from the instantaneous measurements. Experiments were performed at 900 and 1200 rpm engine speeds with wide open throttle.
Technical Paper

Vehicle Accelerator Crash Simulator *

1968-02-01
680791
A versatile acceleration facility is described which accelerates and decelerates a sled or a modified automobile on its own wheels. The same propulsion and snubber systems are used for both the sled and the vehicle configurations with less than an hour required between runs. Accelerations and decelerations up to 60 g, velocities up to 60 mph, onsets of 200-2000 g/sec, acceleration distances up to 10 ft and deceleration distances up to 6 ft are available with excellent reproducibility. Extensive safety features for the operating personnel are provided.
Technical Paper

End-to-End Synthetic LiDAR Point Cloud Data Generation and Deep Learning Validation

2022-03-29
2022-01-0164
LiDAR sensors are common in automated driving due to their high accuracy. However, LiDAR processing algorithm development suffers from lack of diverse training data, partly due to sensors’ high cost and rapid development cycles. Public datasets (e.g. KITTI) offer poor coverage of edge cases, whereas these samples are essential for safer self-driving. We address the unmet need for abundant, high-quality LiDAR data with the development of a synthetic LiDAR point cloud generation tool and validate this tool’s performance using the KITTI-trained PIXOR object detection model. The tool uses a single camera raycasting process and filtering techniques to generate segmented and annotated class specific datasets.
Technical Paper

Sensitivity Analysis of the HANS Head and Neck Support

2000-11-13
2000-01-3541
This paper describes additional and more recent results from the DaimlerChrysler study of HANS that includes a sensitivity analysis of HANS performance to variations in crash dummy neck length and other impact test conditions. The objective of the tests was to determine the robustness of the HANS concept in a variety of conditions that might occur in actual use. The results show that the variations in test parameters do effect injury measures from the crash dummy, but HANS provides substantial reductions in injury potential in all cases compared to not using HANS. Also, no injuries were indicated with HANS.
Technical Paper

Application of a Knee Injury Criteria for the Hybrid III Dummy to Address a Variety of Car Crash and Restraint Scenarios

1999-03-01
1999-01-0710
Numerous studies have documented that lower extremity injury is second only to the head and face in automotive accidents. Such injuries are common because the lower extremity is typically the first point of contact between the occupant and the car interior. Of all lower extremity injuries, the knee is the most common site of trauma. This typically results from high speed contact with the instrument panel which can produce fracture and subfracture (contusions, lacerations, abrasions) level injuries. Current Federal safety guidelines use a bone fracture criterion which is based solely on a peak load. The criterion states that loads exceeding 10 kN will likely result in gross bone fracture. However, cadaver experiments have shown that increased contact area (via padding) over the knee can significantly increase the amount of load that can be tolerated before fracture or subfracture injury.
Technical Paper

Measurement and Analysis of Human Thigh and Buttocks Contours for ASPECT Manikin Development

1999-03-01
1999-01-0964
To provide contours for the new ASPECT manikin, the contours of the thighs and buttocks of mid-size male subjects were measured using a specially built chair. The subjects' body surfaces that were not in contact with the chair and their postures were measured using a video-based position measurement system. Using computer aided design methods, the measured contours were splined and sectioned relative to the local anatomical coordinates for each subject. These local sections were combined and analyzed, with comparison to SAE J826 manikin contours, to provide a thigh and buttocks contour for the ASPECT manikin that represent the mid-size male.
Technical Paper

Initial Measurements and Interpretations of Seat Factors for the ASPECT Program

1999-03-01
1999-01-0958
Seat factors are characteristics of seats that influence people's postures. Seat factors such as lumbar prominence and seat pan stiffnesses were defined and measured for a variety of automotive seats. Seat factors such as these serve as a basis for evaluating and comparing seats. They were useful for selecting seats and designing experiments for human subject testing in the ASPECT program. Seat factors are also candidates for independent variables in statistical posture prediction models. The Seat factors described in this paper were measured with the current J826 manikin. They will be redefined for use with the new ASPECT manikin.
Technical Paper

An Experimental Study on the Factors Affecting Ethanol Ignition Delay Times in a Rapid Compression Machine

2019-04-02
2019-01-0576
Ignition delay, using a rapid compression machine (RCM), is defined as the time period between the end of compression and the maximum rate of pressure rise due to combustion, at a given compressed condition of temperature and pressure. The same compressed conditions can be reached by a variety of combinations of compression ratio, initial temperature, initial pressure, diluent gas composition, etc. It has been assumed that the value of ignition delay, for a given fuel and at a given set of compressed conditions, would be the same, irrespective of the variety of the above-mentioned combinations that were used to achieve the compressed conditions. In this study, a range of initial conditions and compression ratios are studied to determine their effect on ignition delay time and to show how ignition delay time can differ even at the same compressed conditions.
Technical Paper

An Investigation of Fluid Flow During Induction Stroke of a Water Analog Model of an IC Engine Employing LIPA

1995-02-01
950726
This paper presents results from experiments performed in an axisymmetric water analog model of a four-stroke IC engine using the optical velocimetry technique LIPA (Laser Induced Photochemical Anemometry). The investigation can be described as a fundamental scientific inquiry into the fluid dynamics encountered during engine operation, with the long term goal of increasing performance. An application of LIPA to a fluid dynamics problem delivers two-dimensional fields of velocity vectors which are projections of the full three-dimensional vectors in single measurement steps. From an evaluation of a velocity field vorticity information can be obtained readily. Velocity fields and vorticity distributions are, in this study, the basis for the evaluation of seven parametric quantities. Some of these may become tools that give engineers ‘rule of thumb’ indications of the mixing that is occurring.
X