Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Numerical Analysis of Fuel Impacts on Advanced Compression Ignition Strategies for Multi-Mode Internal Combustion Engines

2020-04-14
2020-01-1124
Multi-mode combustion strategies may provide a promising pathway to improve thermal efficiency in light-duty spark ignition (SI) engines by enabling switchable combustion modes, wherein an engine may operate under advanced compression ignition (ACI) at low load and spark-assisted ignition at high load. The extension from the SI mode to the ACI mode requires accurate control of intake charge conditions, e.g., pressure, temperature and equivalence ratio, in order to achieve stable combustion phasing and rapid mode-switches. This study presents results from computational fluid dynamics (CFD) analysis to gain insights into mixture charge formation and combustion dynamics pertaining to auto-ignition processes. The computational study begins with a discussion of thermal wall boundary condition that significantly impacts the combustion phasing.
Technical Paper

Analytical Approach to Characterize the Effect of Engine Control Parameters and Fuel Properties on ACI Operation in a GDI Engine

2020-04-14
2020-01-1141
Advanced compression ignition (ACI) operation in gasoline direct injection (GDI) engines is a promising concept to reduce fuel consumption and emissions at part load conditions. However, combustion phasing control and the limited operating range in ACI mode are a perennial challenge. In this study the combined impact of fuel properties and engine control strategies in ACI operation are investigated. A design of experiments method was implemented using a three level orthogonal array to determine the sensitivity of engine control parameters on the engine load, combustion noise and stability under low load ACI operation for three RON 98 gasoline fuels, each exhibiting disparate chemical composition. Furthermore, the thermodynamic state of the compression histories was studied with the aid of the pressure-temperature framework.
Technical Paper

Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine

2018-09-10
2018-01-1672
The CFR F1 engine is the standard testing apparatus used for rating the research octane number (RON) of gasoline fuels. Unlike the motor octane number (MON) method, where the intake port temperature after the carburetor is controlled by an electric heater, the mixture temperature can vary during the RON test due to the heat of vaporization (HoV) of the fuel. Ethanol is receiving increasing attention as a high octane and high HoV fuel component. This work presents an analysis of the combustion characteristics during the RON rating of ethanol fuel blends according to the standard ASTM D2699 method, highlighting the effects of ethanol concentration and base fuel composition. All fuels were blended to a constant RON of 98. Ethanol levels varied from 0 to 50 vol% and the base fuels were surrogate blends composed of primary reference fuels (PRF), toluene standardization fuels (TSF), and a four component gasoline surrogate.
Technical Paper

Utilizing Static Autoignition Measurements to Estimate Intake Air Condition Requirements for Compression Ignition in a Multi-Mode Engine - Engine and RCM Experimental Study

2019-04-02
2019-01-0957
A multi-mode operation strategy, wherein an engine operates compression ignited at low load and spark ignited at high load, is an attractive way of achieving better part-load efficiency in a light duty spark ignition (SI) engine. Given the sensitivity of compression ignition operation to in-cylinder conditions, one of the critical requirements in realizing such strategy in practice, is accurate control of intake charge conditions - pressure (P), temperature (T) and equivalence ratio (φ), in order to achieve stable combustion and enable rapid mode-switches. This paper presents the first of a two part study, correlating ignition delay data for five RON98 gasoline blends measured under engine-relevant operating conditions in a rapid compression machine (RCM), to the cylinder conditions obtained from a modern SI engine operated in compression ignition mode.
Technical Paper

Utilizing Static Autoignition Measurements to Estimate Intake Air Condition Requirements for Compression Ignition in a Multi-Mode Engine - Application of Chemical Kinetic Modeling

2019-04-02
2019-01-0955
A multi-mode operation strategy, wherein an engine operates compression ignited at low load and spark-ignited at high load, is an attractive way to achieve better part-load efficiency in light duty, spark-ignition (SI) engines, while maintaining robust operation and control across the operating map. Given the sensitivity of compression ignition operation to in-cylinder conditions, one of the critical requirements in realizing such a strategy in practice is accurate control of intake charge conditions - pressure, temperature, as well as fuel loading, to achieve stable combustion and enable rapid mode-switches. A reliable way of characterizing fuels under such operating schemes is key.
X