Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

Modeling of Phase Change within a Wax Element Thermostat Embedded in an Automotive Cooling System

2017-03-28
2017-01-0131
In an automotive cooling circuit, the wax melting process determines the net and time history of the energy transfer between the engine and its environment. A numerical process that gives insight into the mixing process outside the wax chamber, the wax melting process inside the wax chamber, and the effect on the poppet valve displacement will be advantageous to both the engine and automotive system design. A fully three dimensional, transient, system level simulation of an inlet controlled thermostat inside an automotive cooling circuit is undertaken in this paper. A proprietary CFD algorithm, Simerics-Sys®/PumpLinx®, is used to solve this complex problem. A two-phase model is developed in PumpLinx® to simulate the wax melting process. The hysteresis effect of the wax melting process is also considered in the simulation.
Journal Article

A Novel Approach to Create Dimensional Tolerance Requirements from Expert Knowledge

2017-03-28
2017-01-0241
Geometric Dimensioning and Tolerancing is used to describe the allowed feature variations regarding the product design. Tolerance specification is important in many stages of all phases on product development. The product development engineering need to define the symbols to use on the Feature Control Frame of every component. Since the component function has an increment on its complexity year over year, it is not trivial to define those symbols anymore. The determination of dimensional tolerance shall be preceded by careful specification of the types of tolerance and symbols that will be applied in controlled features. Poor tolerance specifications can increase the production cost, require late product changes or lead to legal issues.
Journal Article

Fuel Economy Potential of Variable Compression Ratio for Light Duty Vehicles

2017-03-28
2017-01-0639
Increasing compression ratio (CR) is one of the most fundamental ways to improve engine efficiency, but the CR of practical spark ignition engines is limited by knock and spark retard at high loads. A variable CR mechanism could improve efficiency by using higher CR at low loads, and lower CR (with less spark retard) at high loads. This paper quantifies the potential efficiency benefits of applying variable CR to a modern downsized, boosted gasoline engine. Load sweeps were conducted experimentally on a multi-cylinder gasoline turbocharged direct injection (GTDI) engine at several CRs. Experimental results were compared to efficiency versus CR correlations from the literature and were used to estimate the fuel economy benefits of 2-step and continuously variable CR concepts on several engine/vehicle combinations, for various drive cycles.
Journal Article

Analysis of High Mileage Gasoline Exhaust Particle Filters

2016-04-05
2016-01-0941
The purpose of this work was to examine gasoline particle filters (GPFs) at high mileages. Soot levels for gasoline direct injection (GDI) engines are much lower than diesel engines; however, noncombustible material (ash) can cause increased backpressure, reduced power, and lower fuel economy. In this study, a post mortem was completed of two GPFs, one at 130,000 mi and the other at 150,000 mi, from two production 3.5L turbocharged GDI vehicles. The GPFs were ceramic wall-flow filters containing three-way catalytic washcoat and located downstream of conventional three-way catalysts. The oil consumption was measured to be approaching 23,000 mpqt for one vehicle and 30,000 mpqt for the other. The ash contained Ca, P, Zn, S, Fe, and catalytic washcoat. Approximately 50 wt% of the collected ash was non-lubricant derived. The filter capture efficiency of lubricant-derived ash was about 50% and the non-lubricant metal (mostly Fe) deposition rate was 0.9 to 1.2 g per 10,000 mi.
Journal Article

Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

2016-04-05
2016-01-0942
The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
Journal Article

Systems Engineering Approach for Voice Recognition in the Car

2017-03-28
2017-01-1599
In this paper, a systems engineering approach is explored to evaluate the effect of design parameters that contribute to the performance of the embedded Automatic Speech Recognition (ASR) engine in a vehicle. This includes vehicle designs that influence the presence of environmental and HVAC noise, microphone placement strategy, seat position, and cabin material and geometry. Interactions can be analyzed between these factors and dominant influencers identified. Relationships can then be established between ASR engine performance and attribute performance metrics that quantify the link between the two. This helps aid proper target setting and hardware selection to meet the customer satisfaction goals for both teams.
Journal Article

The Impact of Microphone Location and Beamforming on In-Vehicle Speech Recognition

2017-03-28
2017-01-1692
This paper describes two case studies in which multiple microphone processing (beamforming) and microphone location were evaluated to determine their impact on improving embedded automatic speech recognition (ASR) in a vehicle hands-free environment. While each of these case studies was performed using slightly different evaluation set-ups, some specific and general conclusions can be drawn to help guide engineers in selecting the proper microphone location and configuration in a vehicle for the improvement of ASR. There were some outcomes that were common to both dual microphone solutions. When considering both solutions, neither was equally effective across all background noise sources. Both systems appear to be far more effective for noise conditions in which higher frequency energy is present, such as that due to high levels of wind noise and/or HVAC (heating, ventilation and air conditioning) blower noise.
Journal Article

Validation of In-Vehicle Speech Recognition Using Synthetic Mixing

2017-03-28
2017-01-1693
This paper describes a method to validate in-vehicle speech recognition by combining synthetically mixed speech and noise samples with batch speech recognition. Vehicle cabin noises are prerecorded along with the impulse response from the driver's mouth location to the cabin microphone location. These signals are combined with a catalog of speech utterances to generate a noisy speech corpus. Several factors were examined to measure their relative importance on speech recognition robustness. These include road surface and vehicle speed, climate control blower noise, and driver's seat position. A summary of the main effects from these experiments are provided with the most significant factors coming from climate control noise. Additionally, a Signal to Noise Ratio (SNR) experiment was conducted highlighting the inverse relationship with speech recognition performance.
Journal Article

Optimization of Front Wheel Drive Engine Mounting System for Third Order Shudder Improvement

2017-04-11
2017-01-9175
Nowadays, the vehicle design is highly ruled by the increasing customer demands and expectations. In addition to ride comfort and vehicle handling, the Noise, Vibration and Harshness (NVH) behavior of the powertrain is also a critical factor that has a big impact on the customer experience. To evaluate the powertrain NVH characteristics, the NVH error states should be studied. A typical NVH event could be decoupled into 3 parts: source, path, and receiver. Take-off shudder, which evaluates the NVH severity level during vehicle take-off, is one of the most important NVH error states. The main sources of Front Wheel Drive (FWD) take-off shudder are the plunging Constant Velocity Joints (CVJ) on the left and right half shafts. This is because a plunging CVJ generates a third order plunging force with half shaft Revolution Per Minute (RPM), which is along the slip of the plunging CVJ.
Journal Article

Experiment and Simulation Study on Unidirectional Carbon Fiber Composite Component under Dynamic Three-Point Bending Loading

2018-04-03
2018-01-0096
In the current work, unidirectional (UD) carbon fiber composite hatsection component with two different layups are studied under dynamic three-point bending loading. The experiments are performed at various impact velocities, and the effects of impactor velocity and layup on acceleration histories are compared. A macro model is established with LS-DYNA for a more detailed study. The simulation results show that the delamination plays an important role during dynamic three-point bending test. Based on the analysis with a high-speed camera, the sidewall of hatsection shows significant buckling rather than failure. Without considering the delamination, the current material model cannot capture the post-failure phenomenon correctly. The sidewall delamination is modeled by assumption of larger failure strain together with slim parameters, and the simulation results of different impact velocities and layups match the experimental results reasonably well.
Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

2017-03-28
2017-01-0930
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
Journal Article

Multibody Dynamics Cosimulation for Vehicle NVH Response Predictions

2017-03-28
2017-01-1054
At various milestones during a vehicle’s development program, different CAE models are created to assess NVH error states of concern. Moreover, these CAE models may be developed in different commercial CAE software packages, each one with its own unique advantages and strengths. Fortunately, due to the wide spread acceptance that the Functional Mock-up Interface (FMI) standard gained in the CAE community over the past few years, many commercial CAE software now support cosimulation in one form or the other. Cosimulation allows performing multi-domain/multi-resolution simulations of the vehicle, thereby combining the advantages of various modeling techniques and software. In this paper, we explore cosimulation of full 3D vehicle model developed in MSC ADAMS with 1D driveline model developed in LMS AMESim. The target application of this work is investigation of vehicle NVH error states associated with both hybridized and non-hybridized powertrains.
Journal Article

Advancements and Opportunities for On-Board 700 Bar Compressed Hydrogen Tanks in the Progression Towards the Commercialization of Fuel Cell Vehicles

2017-03-28
2017-01-1183
Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
Journal Article

Stress-Corrosion Cracking Evaluation of Hot-Stamped AA7075-T6 B-Pillars

2017-03-28
2017-01-1271
High-strength aluminum alloys such as 7075 can be formed using advanced manufacturing methods such as hot stamping. Hot stamping utilizes an elevated temperature blank and the high pressure stamping contact of the forming die to simultaneously quench and form the sheet. However, changes in the thermal history induced by hot stamping may increase this alloy’s stress corrosion cracking (SCC) susceptibility, a common corrosion concern of 7000 series alloys. This work applied the breaking load method for SCC evaluation of hot stamped AA7075-T6 B-pillar panels that had been artificially aged by two different artificial aging practices (one-step and two-step). The breaking load strength of the specimens provided quantitative data that was used to compare the effects of tensile load, duration, alloy, and heat treatment on SCC behavior.
Journal Article

Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a Light Duty Spark Ignited Engine

2016-10-17
2016-01-2293
The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas.
Journal Article

Design Considerations for Hydrogen Management System on Ford Hydrogen Fueled E-450 Shuttle Bus

2009-04-20
2009-01-1422
As part of a continuous research and innovation effort, Ford Motor Company has been evaluating hydrogen as an alternative fuel option for vehicles with internal combustion engines since 1997. Ford has recently designed and built an Econoline (E-450) shuttle bus with a 6.8L Triton engine that uses gaseous hydrogen fuel. Safe practices in the production, storage, distribution, and use of hydrogen are essential for the widespread public and commercial acceptance of hydrogen vehicles. Hazards and risks inherent in the application of hydrogen fuel to internal combustion engine vehicles are explained. The development of a Hydrogen Management System (H2MS) to detect hydrogen leaks in the vehicle is discussed, including the evolution of the H2MS design from exploration and quantification of risks, to implementation and validation of a working system on a vehicle. System elements for detection, mitigation, and warning are examined.
Journal Article

A Frontal Impact Taxonomy for USA Field Data

2008-04-14
2008-01-0526
An eight-group taxonomy was created to classify real-world frontal crashes from the Crashworthiness Data System (CDS) component of the National Automotive Sampling System (NASS). Three steps were taken to develop the taxonomy: (1) frontal-impact towaway crashes were identified by examining 1985-2005 model year light passenger vehicles with Collision Deformation Classification (CDC) data from the 1995-2005 calendar years of NASS; (2) case reviews, engineering judgments, and categorization assessments were conducted on these data to produce the eight-group taxonomy; and (3) two subsets of the NASS dataset were analyzed to assess the consistency of the resulting taxonomic-group frequencies. “Full-engagement” and “Offset” crashes were the most frequent crash types, each contributing approximately 33% to the total. The group identified as “D, Y, Z No-Rail” was the most over-represented crash type for vehicles with at least one seriously-injured occupant.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

Pulley Optimization for Improved Steering Pump Airborne Noise Performance

2011-05-17
2011-01-1568
This paper discusses the optimization of an automotive hydraulic steering pump pulley design for improved in-vehicle pump NVH performance. Levels of steering pump whine noise heard inside a vehicle were deemed objectionable. Vehicle and component transfer path analyses indicated that the dominant noise path for the whine noise was airborne in nature. Subsequent experimental modal analysis indicated that the steering pump pulley was a major contributor to the amount of radiated noise produced by the pump/pulley system. CAE analysis was used to further analyze the dynamic behavior of the pulley and develop an optimized design with decreased noise radiation efficiency. The results predicted with the CAE analysis were verified in-vehicle, resulting in a vehicle with acceptable steering pump whine noise performance.
X