Refine Your Search

Topic

Author

Search Results

Journal Article

Automotive Brake Hose Fluid Consumption Characteristics and Its Effects on Brake System Pedal Feel

2010-04-12
2010-01-0082
During the automotive brake system design and development process, a large number of performance characteristics must be comprehended, assessed, and balanced against each other and, at times, competing performance objectives for the vehicle under development. One area in brake development that is critical to customer acceptance due to its impact on a vehicle's perceived quality is brake pedal feel. While a number of papers have focused on the specification, quantification and modeling of brake pedal feel and the various subsystem characteristics that affect it, few papers have focused specifically on brake corner hoses and their effect on pedal feel, in particular, during race-track conditions. Specifically, the effects of brake hose fluid consumption pedal travel and brake system response is not well comprehended during the brake development process.
Technical Paper

On-Engine Performance Evaluation of a New-Concept Turbocharger Compressor Housing Design

2020-04-14
2020-01-1012
Following market demands for a niche balance between engine performance and legislation requirement, a new-concept compressor scroll has been designed for small to medium size passenger cars. The design adopts a slight deviation from the conventional method, thus resulting in broader surge margin and better efficiency at off-design region. This paper presents the performance evaluation of the new compressor scroll on the cold-flow gas-stand followed by the on-engine testing. The testing program focused on back-to-back comparison with the standard compressor scroll, as well as identifying on-engine operational regime with better brake specific fuel consumption (BSFC) and transient performance. A specially instrumented 1.6L gasoline engine was used for this study. The engine control unit configuration is kept constant in both the compressor testing.
Technical Paper

Advanced Environmental Control System (The 2nd Part)

2007-09-17
2007-01-3923
The Advanced ECS is under development for the purpose of saving fuel, improving safety, and cabin comfort. In FY2006 study, basic components (i.e. MDC, OBNOGS, desiccant units, and CO2 removers) have been improved and their performances evaluated including resistance to environmental condition (i.e. vibration). In addition, the suitable system configuration for a 90-seats aircraft has been considered to evaluate the feasibility of the system. In this paper, we show the results of the evaluated performances based on prototype components, and the analytical study of a revised system configuration.
Technical Paper

Flow Investigation of a Centrifugal Compressor for Automotive Turbochargers

1998-02-23
980771
To improve the performance of the centrifugal compressor for automotive turbocharger, it is essential to understand the complicated flow phenomena caused by its complex blade geometry. Authors carried out the detailed flow measurement of the centrifugal compressor impeller uisng Laser Doppler Velocimeter (LDV). The test impeller is a 9.1 times enlarged model of real turbocharger. In result authors found out the low velocity region is grown up at the suction surface of the inducer according to the reduction of flow rate. The experimental data are compared with the three dimensional (3D) viscous flow analysis and acceptable agreement was observed.
Technical Paper

Adaptation of a Variable Displacement Vane Pump to Engine Lube Oil Applications

2007-04-16
2007-01-1567
Variable valve actuation has become a very popular feature in today's engines. With many of these systems being hydraulically actuated, the engine lubrication system requires enhancement to support their function. To expand the system's operational range with respect to speed and temperature, a traditional solution has been to increase oil pressure by increasing pump displacement. To better optimize the system, a variable displacement vane pump has been adapted to the engine lube oil system. Based on existing transmission pump technology, a pivoting cam ring design is employed that is able to vary the pump's displacement as a function of pump regulating oil pressure which in-turn provides a net reduction in its drive torque. While others have addressed this issue using complex and expensive pressure regulating systems, this passive solution requires no valves or additional hardware.
Technical Paper

Lead-time Reduction in Stamping CAE and Die Face Development using Massively Parallel Processing in Forming Simulations

2007-04-16
2007-01-1678
Since 1997, General Motors Body Manufacturing Engineering - Die Engineering Services (BME-DES) has been working jointly with our software vendor to develop and implement a parallel version of stamping simulation software for mass production analysis applications. The evolution of this technology and the insight gained through the implementation of DMP/MPP technology as well as performance benchmarks are discussed in this publication.
Technical Paper

TodayS Electronics in TodayS Vehicles

1998-10-19
98C028
Historically, the long development time required to produce a new automobile has meant that the electronics in that vehicle might lag the state-of-the-art by several years. For traditional vehicle electronics, this was certainly an appropriate delay, ensuring through extensive testing and qualification that the quality and reliability of the electronic systems met rigorous standards. However, with the growing consumer-oriented electronics content in today's vehicles, it is becoming more difficult for the automotive manufacturers to meet consumers' expectations with older technology. Couple this with the fast-paced consumer product cycle, typically nine to eighteen and the result is increasing pressure on the vehicle manufacturers from after-market electronics suppliers, who can update their product lines as fast as the component manufacturers can produce new models.
Technical Paper

Development of Direct and Fast Response Gas Measurement

2008-04-14
2008-01-0758
Due to regulations for even lower levels of pollutants in exhaust gas, development of advanced combustion techniques and increasingly efficient catalysts has become more crucial than ever. One of the essential technologies to achieve this goal is an advanced measurement method, which can detect the characteristics of exhaust gas, such as temperature and chemical compositions, in real-time to clarify their reaction mechanisms. A direct and fast response (1ms) measurement technique was developed based on diode laser absorption spectroscopy and applied to practical engine exhaust measurement to prove the validity of this technology for various applications such as clarification of engine start phenomena and improvement of EGR controls.
Technical Paper

Improvements in Diesel Combustion with After-Injection

2008-10-06
2008-01-2476
The effect of after-injection on exhaust gas emissions from a DI diesel engine with a common rail injection system was experimentally investigated for a range of operating conditions. The results showed that over the whole of the operating range, some reduction in smoke emissions can be achieved with after-injection, without deterioration in thermal efficiency and other emission characteristics. The optimum quantity of after-injection for smoke reduction is 20% of the total fuel supply, and the optimum timing is just after the main injection. Visualization in a bottom view type engine showed that with after-injection, soot formation in the main-injection decrease more due to a smaller quantity of fuel than without after-injection, and soot formation with after-injection is insignificant.
Technical Paper

General Motors Small Front Wheel Drive Six speed Automatic Transmission Family

2010-04-12
2010-01-0857
General Motors introduced a family of small front wheel drive six speed automatic transmissions for the 2008 model year. The family currently has two variants: 6T40 and 6T45, which cover a range of vehicles from small & compact cars to small SUVs and handle engines torque capacities up to 240 Nm Gas(280 Nm Diesel) & 315 Nm Gas (380 Nm Diesel) respectively. The 6T40/45 transmissions replace GM traditional four speed automatic wrap around transmissions 4T40/45. The wrap around transmissions have Torque Converter, Pump & Controls on the engine axis and the rest of the transmission content on the output axis. The 6T40/45 have an on-axis architecture with majority of the transmission content on the engine axis and final drive & differential on the output axis. The 4T40/45 have input chain transfer whereas the 6T40/45 have an output chain transfer.
Technical Paper

Improvement on Cylinder-to-Cylinder Variation Using a Cylinder Balancing Control Strategy in Gasoline HCCI Engines

2010-04-12
2010-01-0848
Homogenous Charge Compression Ignition (HCCI) combustion offers significant efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI combustion, traditional HCCI engines show some degree of sensitivity to in-cylinder thermal conditions; thus higher cylinder-to-cylinder variation was observed especially at low load and high load operating conditions due to different injector characteristics, different amount of reforming as well as non-uniform EGR distribution. To address these issues, a cylinder balancing control strategy was developed for a multi-cylinder engine. In particular, the cylinder balancing control strategy balances CA50 and AF ratio at high load and low load conditions, respectively. Combustion noise was significantly reduced at high load while combustion stability was improved at low load with the cylinder balancing control.
Technical Paper

Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers

2010-04-12
2010-01-1220
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
Technical Paper

Oil Transport Analysis of a Cylinder Deactivation Engine

2010-04-12
2010-01-1098
Engine cylinder deactivation is used to save engine pumping loss but raises oil consumption concerns for the deactivated cylinders. In this paper, general mechanisms of oil transport via piston rings are reviewed. The characteristic of oil transport and oil accumulation in a cylinder deactivation mode through the piston ring path are analyzed. Suggestions to reduce the oil transport to the combustion chamber in a deactivated cylinder are discussed. In a deactivated cylinder, the amount of oil brought into the combustion chamber by the top ring up-scraping due to the ring/bore conformability difference between intake stroke and compression stroke is much less compared to a firing cylinder. However, compared to a firing cylinder, a deactivated cylinder has more oil entering the combustion chamber through the top ring end gap and ring groove as a result of the lower cylinder gas pressure, lower ring temperature and more frequent top ring axial movements.
Technical Paper

Diagnosis of Off-Brake Performance Issues with Low Range Pressure Distribution Sensors

2010-04-12
2010-01-0073
Brake caliper and corner behavior in the off-brake condition can lead, at times, to brake system performance issues such as residual drag (and related issues such as pulsation, judder, and loss of fuel economy), and caliper pryback during aggressive driving maneuvers. The dynamics in the brake corner can be strikingly complex, with numerous friction interfaces, rubber component and grease dynamics, deflections of multiple components, and significant dependence on usage conditions. Displacements of moving parts are usually small, and the residual forces in the caliper interfaces involved are also small in comparison with other forces acting on the same components, making direct observation very difficult. The present work attempts to illuminate off-brake behavior in two different conditions - residual drag and pryback - through the use of low-range pressure distribution sensors placed in between the caliper (pistons and fingers) and the brake pad pressure plates.
Technical Paper

Performance of Coatings for Underbody Structural Components

2001-03-05
2001-01-0363
The Auto/Steel Partnership established the Light Truck Frame Project Group in 1996 with two objectives: (a) to develop materials, design and fabrication knowledge that would enable the frames on North American OEM (original equipment manufacturer) light trucks to be reduced in weight, and (b) to improve corrosion resistance of frames on these vehicles, thereby allowing a reduction in the thickness of the components and a reduction in frame weight. To address the issues relating to corrosion, a subgroup of the Light Truck Frame Project Group was formed. The group comprised representatives from the North American automotive companies, test laboratories, frame manufacturers, and steel producers. As part of a comprehensive test program, the Corrosion Subgroup has completed tests on frame coatings. Using coated panels of a low carbon hot rolled and pickled steel sheet and two types of accelerated cyclic corrosion tests, seven frame coatings were tested for corrosion performance.
Technical Paper

Technical Potential for Thermally Driven Mobile A/C Systems

2001-03-05
2001-01-0297
Aqua-ammonia absorption refrigeration cycle and R-134a Vapor jet-ejector refrigeration cycle for automotive air-conditioning were studied and analyzed. Thermally activated refrigeration cycles would utilize combustion engine exhaust gas or engine coolant to supply heat to the generator. For the absorption system, the thermodynamic cycle was analyzed and pressures, temperatures, concentrations, enthalpies, and mass flow rates at every point were computed based on input parameters simulate practical operating conditions of vehicles. Then, heat addition to the generator, heat removal rates from absorber, condenser, and rectifying unit, and total rejection heat transfer area were all calculated. For the jet-ejector system, the optimum ejector vapor mass ratio based on similar input parameters was found by solving diffuser's conservation equations of continuity, momentum, energy, and flow through primary ejector nozzle simultaneously.
Technical Paper

Automotive A/C System Integrated with Electrically-Controlled Variable Capacity Scroll Compressor and Fuzzy Logic Refrigerant Flow Management

2001-03-05
2001-01-0587
This paper describes the recent efforts on developing an automotive climate control system throughout integrating an electrically-controlled variable capacity scroll compressor with a fuzzy logic control-based refrigerant flow management. Applying electrically-controlled variable capacity compressor technology to climate control systems has a significant impact on improving vehicle fuel economy, achieving higher passenger comfort level, and extending air and refrigerant temperature controllability as well. In this regard, it is very important for automotive climate control engineers to layout a system-level temperature control strategy so that the operation of variable capacity compressor can be optimized through integrating the component control schemes into the system-level temperature control. Electronically controlled expansion devices have become widely available in automotive air conditioning (A/C) systems for the future vehicle applications(1, 2, 3 and 4).
Technical Paper

A Parametric Approach for Rapid Design and Analysis of Automotive HVAC Defrost Systems

2001-03-05
2001-01-0584
The overall vision of this project was to develop a new technology that will be an enabler to reduce design and development time of HVAC systems by an order of magnitude. The objective initially was to develop a parametric model of an automotive HVAC Windshield Defrost Duct coupled to a passenger compartment. It can be used early on in the design cycle for conducting coarse packaging studies by quickly exploring “what-if” design alternatives. In addition to the packaging studies, performance of these design scenarios can be quickly studied by undertaking CFD simulation and analyzing flow distribution and windshield melting patterns. The validated geometry and CFD models can also be used as knowledge building tools to create knowledge data warehouses or repositories for precious lessons learned.
Technical Paper

Study of Homogeneous Charge Compression Ignition Using a Rapid Compression Machine

2001-03-05
2001-01-1033
The purpose of this study is to explain the characteristics of homogeneous charge compression ignition. n-Heptane, which has the same cetane number as diesel fuel, was chosen for the fuel. A rapid compression machine was used to clarify the effects of air-fuel ratio, O2 concentration, and compression temperature on ignition delay and NOx emission. These investigations allowed the introduction of a formula for ignition delay.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
X