Refine Your Search

Topic

Author

Search Results

Technical Paper

Measurement of Structural Attenuation of a Diesel Engine and its Applications for Reduction of Noise and Vibration

1991-11-01
912710
Structural attenuation of a running diesel engine measured by a new technique showed a constant value regardless of engine speeds. It was verified by this result that structural attenuation is a physical quantity unique to the structure of each engine and, therefore, a good indicator for evaluation of low noise engine structure. In addition, a hydraulic excitation test rig was devised to measure structural attenuation directly and to make effective use of it for noise reduction. Based on the accurate measurements by the excitation test rig, modal analysis and system simulation were conducted for implementation of countermeasures against noise.
Technical Paper

Passenger Car Engines for the 21st Century

1991-09-01
911908
During next decade, automotive engineers will take up unprecedented challenges to meet a variety of technical demands on passenger cars. While performance, refinement and reliability will continue to be major technical goals of passenger cars, reducing their impact on the environment not only in urban areas but also on the global basis will become an increasingly urgent issue. In addition, the need for energy and resources saving will necessitate development of more fuel efficient cars, exploitation of alternative energy and recycled materials. In this paper, the authors will review various alternative engines as candidates to satisfy the above demands. The authors will also discuss various alternative transportation energy sources such as alcoholic fuels, natural gas, hydrogen and electricity. Finally the trends of future passenger car engine design will be discussed.
Technical Paper

Development of Titanium Alloy Valve Spring Retainers

1991-02-01
910428
Beta Ti alloy valve spring retainers are newly developed for use in mass produced automobiles for the first time. Ti alloy valve spring retainers vith a weight saving of 42%, compared to steel retainers, have reduced the inertial weight of the valve train components by 6%. And this weight reduction has the benefit of increasing the upper limit of the engine speed, which improves the engine performance. Ti alloy valve spring retainers are cold forged by the conventional fabrication facilities for steel retainers, using Ti-22V-4Al (the beta Ti alloy) which possesses excellent cold workability in a solution treated condition. Oxygen surface hardening is applied to protect Ti alloy valve spring retainers from wear damage. In addition, aging treatment and shot blasting are performed to improve strength and stiffness of valve retainers.
Technical Paper

Development of Austempered Ductile Iron Timing Gears

1997-11-17
973253
Austempered ductile iron (ADI) is a material having excellent mechanical properties and damping capacity. However practical mass production of ADI gears has not been possible due to ADI's poor machinability and distortion during the austempering heat treatment. With a new process method of carrying out hobbing before austempering when the material is in its soft condition, then austempering it and lastly, conducting the shave finishing process, we have diminished the above defects and developed practical ADI gears. These new gears generate less noise than ordinary nitrocarburized steel gears and are superior in pitting resistance.
Technical Paper

Common Rail Fuel Injection System for Improvement of Engine Performance on Heavy Duty Diesel Engine

1998-02-23
980806
With the intention of improving engine performance and emissions, the authors examined the influence of the method of initial fuel injection quantity reduction and of the injector configuration of a common rail fuel injection system on engine performance and exhaust emissions. Results showed that decreasing the nozzle hole diameter was an effective way to reduce the initial injection quantity without increasing black smoke. Compared to a three-way type injector, it was found that a two-way type injector can greatly reduce the amount of fuel leakage from the electromagnetic injector control valve and fuel consumption could be further improved by reduction of the driving loss. Furthermore, the increase of driving losses with higher injection pressure was small, and as a result, higher pressure injection was possible.
Technical Paper

Application to Body Parts of High-Strength Steel Sheet Containing Large Volume Fraction of Retained Austenite

1998-02-23
980954
Several different steel sheets were tested for energy absorption, using hat square columns and dynamic crash testing. Results indicate that steel sheets containing large volume fraction of retained austenite have relatively high energy absorption. The relationship between retained austenite and energy absorption was analyzed. These special steel sheets have already been successfully used for production body parts, such a front-side-member, without difficulties arising in volume production.
Technical Paper

Effect of Turbulence in Intake Port of MPI Engine on Fuel Transport Phenomena and Nonuniformity of Fuel/Air Mixing in Cylinder

1990-02-01
900162
Three zone mixture preparation model, assuming that fuel and air are distributed in three separate zones, fuel air and mixture zone, was proposed. Air Utilization Efficiency derived from the model was used to evaluate the mixing nonuniformity. Effect of the large scale nonisotropic turbulence downstream of the dimple or edge in the intake port of MPI engine on the convective mass transfer from fuel film was clarified by the proposed nondimensional index, Local Sherwood Number. It was found that when the fuel is injected toward the wall where large scale turbulence exists, almost all of the fuel is seeded in the air passing the region at the beginning of the intake process, resulting in the time-resolved nonuniformity of the mixture strength at the intake valve. Using the Air Utilization Efficiency, it was elucidated that time-resolved mixing nonuniformity at intake valves induces spatially nonuniform fuel/air distribution in the cylinder.
Technical Paper

Technology for Meeting the 1991 U.S.A. Exhaust Emission Regulations on Heavy Duty Diesel Engine

1990-10-01
902233
Protection of the Earth's environment by means of energy saving and cleaning up of air pollution on a global scale is one of the most important subjects in the world today. Because of this, the requirements for better fuel economy and cleaner exhaust emissions of internal combustion engines have been getting stronger, and, in particular, simultaneous reduction in nitrogen oxides (NOx) and particulate matter (PM) from heavy-duty diesel engines (HDDEs) without degrading fuel economy has become a major subject. Mitsubishi Motors Corporation (MM) has been selling diesel-powered heavy-duty trucks in the U.S. market since 1985 and has agressively carried out development work for meeting the 1991 model year exhaust emission standards.
Technical Paper

Ceramic Tappets Cast in Aluminum Alloy for Diesel Engines

1990-02-01
900403
The authors developed, for use in diesel engines, ceramic tappets cast in aluminum alloy that drastically improved wear resistance and valve train dynamics. The ceramic tappets consist of two parts: a ceramic head, which contacts the cam and push rod, and a tappet body made of aluminum alloy. Concerning the ceramic, silicon nitride was the best material of the three ceramics evaluated in the tests and the sliding surface, in contact with the cam and push rod, was left unground. As for the aluminum alloy, hyper-eutectic aluminum-silicon alloy with a controlled pro-eutectic silicon size was selected. A reliability analysis using the finite-element method (FEM) was also made on the structure of the ceramic tappet for enhanced durability and reliability. The combination of this tappet and a cam made of hardened ductile cast iron, hardened steel, or chilled cast iron, respectively exhibits excellent wear resistance.
Technical Paper

New Mitsubishi L4 5-Liter DI Diesel Engine

1998-11-16
982800
The 4M5 series of four-cylinder, in-line, direct-injection diesel engines has been released by Mitsubishi Motors Corporation for light and medium-duty trucks and buses. Featuring an updated structure and reflecting the employment of state-of-the-art technology in the design of every component, the new engine series offers high reliability and compact dimensions. Moreover, the new series well meets contemporary demands for high performance, low noise, and clean combustion.
Technical Paper

Innovative injection rate control with next-generation, common-rail fuel injection system

2000-06-12
2000-05-0061
Injection rate control is an important capability of the ideal injection system of the future. However, in a conventional Common-Rail System (CRS) the injection pressure is constant throughout the injection period, resulting in a nearly rectangular injection rate shape and offering no control of the injection rate. Thus, in order to realize injection rate control with a CRS, a "Next- generation Common-Rail System (NCRS)" was conceptualized, designed, and fabricated. The NCRS has two common rails, for low- and high-pressure fuel, and switches the fuel pressure supplied to the injector from the low- to the high- pressure rail during the injection period, resulting in control over the injection rate shape. The effects of injection rate shape on exhaust emissions and fuel consumption were investigated by applying this NCRS to a single- cylinder research engine.
Technical Paper

Characteristics and Combustibility of Particulate Matter

1992-02-01
920687
For meeting more stringent regulations to be imposed for reducing particulate matter (PM) in exhaust gas from diesel engines, it is required to improve performance of a trap system or other post-processing devices as well as fuel combustion efficiency of the engine itself. In the trap system, a trap filter is equipped to collect PM from exhaust gas. For continuous use of the trap filter, a regenerative processing must be carried out to remove PM by means of forced burning when a certain amount of PM has been trapped. The combustibility or burning characteristics of collected PM have a significant effect on the regenerative processing with an electric heater/burner. To clarify the combustibility of PM collected in the trap filter, we have examined the relationships between engine drive conditions (exhaust gas temperature), PM characteristics, and combustibility.
Technical Paper

New Mitsubishi V8 20 Liter Diesel Engine

1992-02-01
920085
In the heavy-duty commercial vehicle market in Japan, particularly in the segment of dump trucks and tractors, naturally aspirated engines maintain a dominant market share because of their superior torque characteristics in the low speed range. In order to meet the ever increasing needs for higher speeds of transportation, better fuel economy and higher reliability, and the needs for increasingly strict exhaust emission regulations, Mitsubishi Motors Corporation (MMC) has developed the 8M20, a 20 liter V8 diesel engine. The '92 model series of “THE GREAT”, MMC's main heavy-duty trucks, has featured this new and powerful engine and has been in the market place since October, 1991. The 8M20 is a naturally aspirated engine that provides an output of 294kW/2200rpm, complying with the current Japanese exhaust emission regulations.
Technical Paper

Mitsubishi New 12.0-Liter Turbocharged and Intercooled Diesel Engine

1990-09-01
901572
To meet the increasingly strong demand for high-speed transportation, better fuel economy, higher reliability and the social requirements for more strict Japanese regulations against exhaust and noise emissions, Mitsubishi Motors Corporation has recently developed the 6D40T1 in-line 6-cylinder, 12.0-liter turbocharged and intercooled diesel engine for heavy-duty trucks. This engine meets the 1989 Japanese exhaust emission regulations and has an output of 258 kW. To achieve both fuel economy and good drivability, Mitsubishi's original, electronically-controlled fuel injection system was adopted. The so-called prestroke-controlled fuel injection pump is capable of flexible and precise control of both fuel injection rate and timing. The basic structure of the 6D40T1 was designed with high rigidity to permit high cylinder pressures. In addition, to reduce friction and heat losses, a 4-valve design, roller cam followers with needle roller bearings, and shortened exhaust ports were adopted.
Technical Paper

Prediction Method of Cooling System Performance

1993-03-01
930146
This paper describes a method of predicting cooling performance in order to obtain the optimum design of the cooling system and front-end shape in the early stage of car development. This method consists of four calculation parts: thermal load on the cooling system, air flow through the engine compartment, heat dissipation by the heat exchangers and temperature distribution within the cooling system. It outputs the coolant, engine oil, automatic transmission fluid (A.T.F.) and charge air temperatures in exchange for the input of several car, power plant, drive train, exterior shape and cooling system specifications. For the calculations, in addition to theoretical formulas, several experimental formulas are introduced. This method verification is shown by presenting a few test cases for the respective calculation parts and the final solution.
Technical Paper

Heat Flow on Disc Brakes

1993-04-01
931084
This paper describes an experimental analysis of frictional heat generated between the pads and rotors of disc brakes, to determine the paths and amounts of heat flow. The brakes were applied repeatedly at a constant initial speed, deceleration and interval until brake temperature became saturated. Under these conditions we measured an unsteady temperature distribution state during a single application of the brakes, and also a saturated (quasi-stationary) temperature distribution during repeated braking. Heat flow was studied in six paths: heat conduction to the pad; heat convection to the air from the friction areas of the inner and outer disc, from the ventilating parts and from the tube section of the rotor; and heat conduction to the rotor flange section.
Technical Paper

Reduction of Spiral Bevel Gear Noise in 4-Wheel Drive Vehicle Transfer System

1992-09-01
922109
Mitsubishi Motors Corporation uses spiral bevel gears in the transfer system for 4-wheel drive passenger cars modified from the front wheel drive configuration. This transfer gear ratio is near 1:1, and gears have uniform depth teeth cutting by the continuous generating method of OERLIKON cutting machine. In this method, the cutter and the work rotations are timed together to accomplish continuous indexing and cutting in order to enable high productivity. In general, it is difficult to reduce the meshing noise of spiral bevel gears and control its quality. The authors established the tooth surface coordinates, to reduce the meshing noise, by studying the influence of tooth surface coordinates on the meshing transmission error (MTE).
Technical Paper

New Mitsubishi 2.8L Four-Cylinder Diesel Engine

1994-03-01
940587
In the light commercial vehicles (LCV) market, primarily cross-country 4-wheel drive station wagons and derived cargo vans, diesel powered vehicles have been gaining popularity among customers because of their increased fuel economy. In the Japanese market particularly, total sales of such types of vehicles have been rapidly growing. The volume is about 3 times larger than the last five years with diesel engines having a steady share of about 90 percent. Under such circumstances the customers' requirements for diesel vehicles are becoming more severe. Their primary demands have been for increased power, low noise, low vibration and clean smoke, similar to those found in gasoline engines. On the other hand, the exhaust gaseous emission regulations of the diesel engines are getting strict and will become very severe in the near future. We, MITSUBISHI MOTORS CORPORATION, have been producing a 2.5 L 4-cylinder diesel, the 4D56 Series, for the LCVs.
Technical Paper

Technology for Low Emission, Combustion Noise and Fuel Consumption on Diesel Engine

1994-03-01
940672
In order to reduce exhaust emission and combustion noise and to improve fuel consumption, the effects of the combustion system parameters of a diesel engine, such as injection pressure, injection nozzle hole diameter, swirl ratio, and EGR rate on exhaust emissions, combustion noise and fuel consumption are investigated and described in detail by analyzing rate of heat release, needle valve lift and injection pressure. Based on these results, reduction of exhaust emission and combustion noise and improvement of fuel consumption are described in the latter part of this paper. These results are shown as follows. The smaller nozzle hole diameter is effective for reducing smoke and PM, and by optimizing the injection timing and swirl ratio, NOx can also be reduced. In addition to the above, by applying EGR and higher injection pressure it is possible to improve the fuel consumption with the remaining low NOx and PM.
Technical Paper

A Study of Low-Noise Crankcase Structure for Light Commercial Vehicle

1994-11-01
942267
To reduce diesel engine noise that is induced mainly by main bearing impact forces, two types of low noise concepts of basic crankcase structures were studied. One is the “Isolated Skirt Type”, which has the feature to suppress vibrations of engine surface by separating the crankcase skirt from the main bearing caps. The other is the “Bed Plate Type”, which embodies the feature to suppress vibrations by stiffening the lower part of crankcase by adopting a bed plate design. Dynamic characteristics of both prototypes were investigated by means of experimental modal testings such as double pulse laser holography system and impulsive hydraulic excitation test rig which simulates the exciting force of combustion gas pressure in cylinder. As the result of many experimental tests, it was concluded that the “Bed Plate Type” was advantageous over the “Isolated Skirt Type” in terms of engine noise reduction.
X