Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Systematic Optimization of an Exhaust System to Meet Noise Radiation Criteria at Idle

2014-04-01
2014-01-0006
Exhaust noise is a major contributor to the radiated noise level of a vehicle, especially at idle. The radiated noise level has to meet a certain criteria based on regulation and consumer demand. In many cases, the problem appears after the vehicle is manufactured and the tailpipe noise measurement is performed indicating a high noise level that needs to be reduced. This paper describes one of those cases where the radiated noise level of a certain passenger car at idle was required to be reduced by 6 dB(A). The exhaust system consists of one main muffler and one auxiliary muffler. A 1D two-port model of the exhaust system including the two mufflers was built using commercial software. This model was validated against the measurement of the two-port matrix of both mufflers. The model was then used together with tailpipe noise measurements to estimate the characteristics of the source strength and impedance.
Journal Article

A Compact Silencer for the Control of Compressor Noise

2014-06-30
2014-01-2060
Current trends for IC-engines are driving the development of more efficient engines with higher specific power. This is true for both light and heavy duty vehicles and has led to an increased use of super-charging. The super-charging can be both in the form of a single or multi-stage turbo-charger driven by exhaust gases, or via a directly driven compressor. In both cases a possible noise problem can be a strong Blade Passing Frequency (BPF) typically in the kHz range and above the plane wave range. In this paper a novel type of compact dissipative silencer developed especially to handle this type of problem is described and optimized. The silencer is based on a combination of a micro-perforated (MPP) tube backed by a locally reacting cavity. The combined impedance of micro-perforate and cavity is chosen to match the theoretical optimum known as the Cremer impedance at the mid-frequency in the frequency range of interest.
Journal Article

IC-Engine Exhaust and Intake System Acoustic Source Characterization

2014-06-30
2014-01-2061
The paper gives an overview of techniques used for characterization of IC-engines as acoustic sources of exhaust and intake system noise. Some recent advances regarding nonlinear source models are introduced and discussed. To calculate insertion loss of mufflers or the level of radiated sound information about the engine as an acoustic source is needed. The source model used in the low frequency plane wave range is often the linear time invariant one-port model. The acoustic source data is obtained from experimental tests or from 1-D CFD codes describing the engine gas exchange process. The IC-engine is a high level acoustic source and in most cases not completely linear. It is therefore of interest to have models taking weak non-linearity into account while still maintaining a simple method for interfacing the source model with a linear frequency domain model for the attached exhaust or intake system.
Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
Technical Paper

Theoretical Assessment of Rigs for Accelerated Ash Accumulation in Diesel Particulate Filters

2020-09-15
2020-01-2175
Renewable fuels from different feedstocks can enable sustainable transport solutions with significant reduction in greenhouse gas emissions compared to conventional petroleum-derived fuels. Nevertheless, the use of biofuels in diesel engines will still require similar exhaust gas cleaning systems as for conventional diesel. Hence, the use of diesel particulate filters (DPF) will persist as a much needed part of the vehicle’s aftertreatment system. Combustion of renewable fuels can potentially yield soot and ash with different properties as well as larger amounts of ash compared to conventional fossil fuels. The faster ash build-up and altered ash deposition pattern lead to an increase in pressure drop over the DPF, increase the fuel consumption and call for premature DPF maintenance or replacement. Prolonging the maintenance interval of the DPF for heavy-duty trucks, having a demand for high up-time, is highly desirable.
Journal Article

A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs

2015-09-27
2015-01-2665
The emission of airborne wear particles from friction material / cast iron pairs used in car brakes was investigated, paying special attention to the influence of temperature. Five low-metallic materials and one non-asbestos organic material were tested using a pin-on-disc machine. The machine was placed in a sealed chamber to allow airborne particle collection. The concentration and size distribution of 0.0056 to 10 μm particles were obtained by a fast mobility particle sizer and an optical particle sizer. The temperature was measured by a thermocouple installed in the disc. The experiments show that as the temperature increases from 100 to 300 °C the emission of ultrafine particles intensifies while that of coarse particles decreases. There is a critical temperature at which the ultrafine particle emission rate rises stepwise by 4 to 6 orders of magnitude. For the friction pairs investigated, the critical temperature was found to be between 165 and 190 °C.
Journal Article

Analysis of the Turbocharger Compressor Surge Margin Using a Hurst-Exponent-based Criterion

2016-04-05
2016-01-1027
Turbocharger compressors are limited in their operating range at low mass flows by compressor surge, thus restricting internal combustion engine operation at low engine speeds and high mean effective pressures. Since the exact location of the surge line in the compressor map depends on the whole gas exchange system, a safety margin towards surge must be provided. Accurate early surge detection could reduce this margin. During surge, the compressor outlet pressure fluctuates periodically. The Hurst exponent of the compressor outlet pressure is applied in this paper as an indicator to evaluate how close to the surge limit the compressor operates. It is a measure of the time-series memory that approaches zero for anti-persistence of the time series. That is, a Hurst exponent close to zero means a high statistical preference that a high value is followed by a low value, as during surge.
Journal Article

Semi-Empirical CFD Transient Simulation of Engine Air Filtration Systems

2016-04-05
2016-01-1368
To improve fuel efficiency and facilitate handling of the vehicle in a dense city environment, it should be as small as possible given its intended application. This downsizing trend impacts the size of the engine bay, where the air filter box has to be packed in a reduced space, still without increased pressure drop, reduced load capacity nor lower filtering efficiency. Due to its flexibility and reduced cost, CFD simulations play an important role in the optimization process of the filter design. Even though the air-flow through the filter box changes as the dust load increases, the current modeling framework seldom account for such time dependence. Volvo Car Corporation presents an industrial affordable model to solve the time-dependent dust load on filter elements and calculate the corresponding flow behavior over the life time of the air filter box.
Journal Article

Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements

2017-03-28
2017-01-1046
Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
Technical Paper

Development of a Method to Measure Soft Particles from Diesel Type Fuels

2020-04-14
2020-01-0344
Renewable fuels have an important role to create sustainable energy systems. In this paper the focus is on biodiesel, which is produced from vegetable oils or animal fats. Today biodiesel is mostly used as a drop-in fuel, mixed into conventional diesel fuels to reduce their environmental impact. Low quality drop-in fuel can lead to deposits throughout the fuel systems of heavy duty vehicles. In a previous study fuel filters from the field were collected and analyzed with the objective to determine the main components responsible for fuel filter plugging. The identified compounds were constituents of soft particles. In the current study, the focus was on metal carboxylates since these have been found to be one of the components of the soft particles and associated with other engine malfunctions as well. Hence the measurement of metal carboxylates in the fuel is important for future studies regarding the fuel’s effect on engines.
Technical Paper

A Measurement of Fuel Filters’ Ability to Remove Soft Particles, with a Custom-Built Fuel Filter Rig

2020-09-15
2020-01-2130
Biofuel can enable a sustainable transport solution and lower greenhouse gas emissions compared to standard fuels. This study focuses on biodiesel, implemented in the easiest way as drop in fuel. When mixing biodiesel into diesel one can run into problems with solubility causing contaminants precipitating out as insolubilities. These insolubilities, also called soft particles, can cause problems such as internal injector deposits and nozzle fouling. One way to overcome the problem of soft particles is by filtration. It is thus of great interest to be able to quantify fuel filters’ ability to intercept soft particles. The aim of this study is to test different fuel filters for heavy-duty engines and their ability to filter out synthetic soft particles. A custom-built fuel filter rig is presented, together with some of its general design requirements. For evaluation of the efficiency of the filters, fuel samples were taken before and after the filters.
Technical Paper

ISS IATCS Coolant Loop Biocide Implementation

2008-06-29
2008-01-2159
The proliferation and growth of microorganisms in the Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) has been of significant concern since 2001. Initial testing and assessments of biocides to determine bacterial disinfection capability, material compatibility, stability (rate of oxidative degradation and identification of degradation products), solubility, application methodology, impact on coolant toxicity hazard level, and impact on environmental control and life support systems identified a prioritized list of acceptable biocidal agents including glutaraldehyde, ortho-phthalaldehyde (OPA), and methyl isothiazolone. Glutaraldehyde at greater than 25 ppm was eliminated due to NASA concerns with safety and toxicity and methyl isothiazolone was eliminated from further consideration due to ineffectiveness against biofilms and toxicity at higher concentrations.
Technical Paper

Status of the Orion Environmental Control and Life Support Architecture

2008-06-29
2008-01-2085
In 2007, the architecture of the Orion Environmental Control and Life Support System went through a major reassessment driven by overall vehicle weight considerations. The changes were initiated with the challenge to switch from a two fault tolerant based configuration to one that is one fault tolerant. This paper describes this design evolution.
Technical Paper

Liquid Cooling Garment Adaptation to Enhance Surgical Outcomes

2003-07-07
2003-01-2339
Hypothermia is a well documented problem for surgical patients and is historically addressed by the use of a variety of warming aids and devices applied to the patient before, during, and after surgery. Their effectiveness is limited in many surgeries by practical constraints of surgical access, and hypothermia remains a significant concern. Increasing the temperature of the operating room has been proposed as an alternative solution. However, operating room temperatures must be cool enough to limit thermal stress on the surgical team despite the heat transport barriers imposed by protective sterile garments. Space technology in the form of the liquid cooling garment worn by EVA astronauts answers this need. Hamilton Sundstrand Space Systems International (HSSSI) has been working with Hartford Hospital to adapt liquid cooling garment technology for use by surgical teams in order to allow them to work comfortably in warmer operating room environments.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

Chameleon Suit – A Different Paradigm for Future EVA Systems

2003-07-07
2003-01-2445
The demands of future NASA exploration and scientific missions in space force the reevaluation of some of the basic assumptions and approaches that underlie current extravehicular activity (EVA) systems. Developing designs that can simultaneously achieve the advanced capabilities and the reductions in system mass and mission expendables targeted by NASA has proven to be a formidable challenge. The constraints of human needs, space environments, and current EVA system architectures demand technical capabilities beyond current expectations to achieve system goals. Under NASA Institute for Advanced Concepts (NIAC) sponsorship, Hamilton Sundstrand has been studying a new system paradigm to achieve the EVA system goals. The Chameleon Suit concept employs an active pressure suit that directly interacts between human systems and space environments.
Technical Paper

Performance Characteristics of a High Intensity Cryogenic Flow Boiler

2003-07-07
2003-01-2507
Hamilton Sundstrand has been working on the development of a new cryogenic flow boiler based on its patented compact, high-intensity cooler (CHIC) technology intended to provide low weight and volume and overcome freezing problems associated with cryogen use in EVA spacesuit cooling. Tests of the prototype device resulting from that effort have now been completed. The test data demonstrate that the design is extremely resistant to freezing the heat transport fluid as anticipated. Highly effective heat transfer is achieved in a compact device combining the functions of several conventional heat exchangers. This novel heat exchanger, a “normal flow” layered impingement arrangement should provide a very compact solution to any heat transfer applications where the cold fluid operates below the warm fluid's freezing point. Test results are generally consistent with design analyses for the prototype.
Technical Paper

Testing and Development of New Catalysts for Vapor Phase Ammonia Oxidation

2003-07-07
2003-01-2502
Catalytic oxidation is an effective means of controlling the build up of ammonia and other trace gas contaminants within closed spaces. However, it sometimes leads to the formation of noxious gases that need to be removed in post-treatment systems. In addition, ammonia removal is an issue when regeneration of water from wastewater is considered since ammonia is a byproduct of urea decomposition. For example, the VPCAR (Vapor Phase Catalytic Ammonia Reduction) advanced water processor system includes an oxidation reactor for the destruction of ammonia and of other volatile organics that are not separated out in the evaporator due to their volatility. The oxidation of ammonia may produce nitrogen, nitrogen oxides (NO and NO2), nitrous oxide (N2O) and water vapor. The Spacecraft Maximum Allowable Concentration (SMAC) for NO and NO2 are respectively 4.5 and 0.5 ppm whereas the Threshold Limit Value (TLV) for N2O is 25 ppm.
Technical Paper

Selection of an Alternate Biocide for the International Space Station Internal Active Thermal Control System Coolant Loops

2003-07-07
2003-01-2568
The International Space Station (ISS) IATCS (Internal Active Thermal Control System) includes two internal coolant loops that use an aqueous based coolant for heat transfer. A silver salt biocide was used initially as an additive in the coolant formulation to control the growth and proliferation of microorganisms in the coolant loops. Ground-based and in-flight testing has demonstrated that the silver salt is rapidly depleted and not effective as a long-term biocide. Efforts are now underway to select an alternate biocide for the IATCS coolant loop with greatly improved performance. An extensive evaluation of biocides was conducted to select several candidates for test trials.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
X