Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Experimental Method Extracting Dominant Acoustic Mode Shapes for Automotive Interior Acoustic Field Coupled with the Body Structure

2013-05-13
2013-01-1905
For a numerical model of vibro-acoustic coupling analysis, such as a vehicle noise and vibration, both structural and acoustical dynamic characteristics are necessary to replicate the physical phenomenon. The accuracy of the analysis is not enough for substituting a prototype phase with a digital phase in the product development phases. One of the reasons is the difficulty of addressing the interior acoustical characteristics due to the complexity of the acoustical transfer paths, which are a duct and a small hole of trim parts in a vehicle. Those complex features affect on the nodal locations and the body coupling surface of acoustic mode shapes. In order to improve the accuracy of the analysis, the physical mechanisms of those features need to be extracted from experimental testing.
Journal Article

Development of Hardware-In-the-Loop Simulation System for Steering Evaluation Using Multibody Kinematic Analysis

2014-04-01
2014-01-0086
The adoption of the electronic controlled steering systems with new technologies has been extended in recent years. They have interactions with other complex vehicle subsystems and it is a hard task for the vehicle developer to find the best solution from huge number of the combination of parameter settings with track tests. In order to improve the efficiency of the steering system development, the authors had developed a steering bench test method for steering system using a Hardware-In-the-Loop Simulation (HILS). In the steering HILS system, vehicle dynamics simulation and the tie rod axial force calculation are required at the same time in the real-time simulation environment. The accuracy of the tie rod axial force calculation is one of the key factors to reproduce the vehicle driving condition. But the calculation cannot be realized by a commercial software for the vehicle dynamics simulation.
Journal Article

Verification of Flag Usage Patterns by Static Analysis Techniques

2014-04-01
2014-01-0180
A flag is a global boolean variable used to achieve synchronization between various tasks of an embedded system. An application implementing flags performs actions or events based on the value of the flags. If flag variables are not implemented properly, certain synchronization related issues can arise which can lead to unexpected behavior or failure of the underlying system. In this paper, we present an automated verification technique to identify and verify flag usage patterns at an early stage of code development. We propose a two-step approach which consists of: a. identification of all potential flag variables and b. verification of flag usage patterns against predefined set of rules. The results of our experiment demonstrate that the proposed approach reduces the cost and complexity of the flag review process by almost 70%.
Journal Article

A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines

2015-04-14
2015-01-0883
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio for improving thermal efficiency and downsizing the engine based on fuel-efficient operating conditions are good examples of technologies for enhancing gasoline engine fuel economy. A direct-injection system is adopted for most of these engines. Direct injection can prevent knocking by lowering the in-cylinder temperature through fuel evaporation in the cylinder. Therefore, direct injection is highly compatible with downsized engines that frequently operate under severe supercharging conditions for improving fuel economy as well as with high compression ratio engines for which susceptibility to knocking is a disadvantage.
Journal Article

A Novel Multiple DC-Inputs Direct Electric-Power Converter

2009-04-20
2009-01-0293
A new multiple dc-inputs direct electric-power converter (D-EPC) has been developed. It is placed between multiple dc power sources and an ac motor, eliminating the need for a dc/dc converter generally used in conventional converter/inverter systems. The D-PEC can improve the efficiency of the motor drive system with a more compact size. Its power distribution control is carried out by allotting voltage ratios to each of two different dc power sources on a time average basis. A new pulse-width-modulation (PWM) generation technique to drive switching devices in the D-EPC has also been developed. Tests have verified that the three-phase ac motor can be operated by controlling the power distribution between the two power sources.
Journal Article

Development of a Parallel Hybrid System for RWD Vehicles

2011-04-12
2011-01-0884
In December 2006, Nissan announced its Nissan Green Program 2010 (NGP 2010), a mid-term environmental action plan that includes initiatives to reduce vehicle emissions. In line with this plan, the company intends to introduce a new and original hybrid system in fiscal year 2010. Specifically, this system-called the “Infiniti Direct Response Hybrid”-is a one-motor, two-clutch parallel hybrid system that eliminates the need for a torque converter. It will be featured in the 2012 Infiniti M35 Hybrid and provides the following advantages. 1 Significant improvement in fuel economy even in Highway driving 2 Better response and a more direct feeling 3 Lightweight and low cost This one-motor, two-clutch system without torque converter possesses a simple but highly capable architecture that is new to the passenger vehicle segment.
Technical Paper

A Robotic Driver on Roller Dynamometer with Vehicle Performance Self Learning Algorithm

1991-02-01
910036
A robotic driver has been designed on the basis of an analysis of a human driver's action in following a given driving schedule. The self-learning algorithm enables the robot to learn the vehicle characteristics without human intervention. Based on learned relationships, the robotic driver can determine an appropriate accelerator position and execute other operations through sophisticated calculations using the future scheduled vehicle speed and vehicle characteristics data. Compensation is also provided to minimize vehicle speed error. The robotic driver can reproduce the same types of exhaust emission and fuel economy data obtained with human drivers with good repeatability. It doesn't require long preparation time. Thereby making it possible to reduce experimentation work in the vehicle development process while providing good accuracy and reliability.
Technical Paper

An Analysis of Induction Port Fuel Behavior

1991-10-01
912348
Since the fuel supply specifications in a multi-point injection (MPI) system are usually determined experimentaly, the way fuel behaves in the induction port is still not clearly understood. In this study, a fuel behavior model is developed to gain a better understanding of how fuel behaves in the induction port so that the best fuel supply specifications can be determined on the basis of analysis. This paper outlines a model of fuel spray and wall film and presents some typical calculation results. Taking into account fuel properties, the vapor, the flow and other characteristics of fuel in the induction port are calculated using these models. A comparison of the calculated results with experimental data confirms the validity of the model. The calculated results show the effects of the fuel propeties and fuel supply system specifications on induction port fuel behavior.
Technical Paper

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

1997-10-01
972837
Detergent additives in automotive gasoline fuel are mainly designed to reduce deposit formation on intake valves and fuel injectors, but it has been reported that some additives may contribute to CCD formation. Therefore, a standardized bench engine test method for CCDs needs to be developed in response to industry demands. Cooperative research between the Petroleum Association of Japan (PAJ) and the Japan Automobile Manufacturers Association, Inc. (JAMA), has led to the development of a 2.2L Honda engine dynamometer-based CCD test procedure to evaluate CCDs from fuel additives. Ten automobile manufacturers, nine petroleum companies and the Petroleum Energy Center joined the project, which underwent PAJ-JAMA round robin testing. This paper describes the CCD test development activities, which include the selection of an engine and the determination of the optimum test conditions and other test criteria.
Technical Paper

Research on Crankshaft System Behavior Based on Coupled Crankshaft-Block Analysis

1997-10-01
972922
Achieving a multi-cylinder engine with excellent noise/vibration character sties and low friction at the main bearings requires an optimal design not only for the crankshaft construction but also for the bearing support system of the cylinder block. To accomplish that, it is necessary to understand crankshaft system behavior and the bearing load distribution for each of the main bearings. Crankshaft system behavior has traditionally been evaluated experimentally because of the difficulty in performing calculations to predict resonance behavior over the entire engine speed range. A coupled crankshaft-block analysis method has been developed to calculate crankshaft system behavior by treating vibration and lubrication in a systematic manner. This method has the feature that the coupled behavior of the crankshaft and the cylinder block is analyzed by means of main bearing lubrication calculations. This paper presents the results obtained with this method.
Technical Paper

Nano Particle Emission Evaluation of State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI) and Fuel Qualities Effects (EtOH, ETBE, FAME, Aromatics and Distillation)

2007-10-29
2007-01-4083
Newly designed laboratory measurement system, which reproduces particle number size distributions of both nuclei and accumulation mode particles in exhaust emissions, was developed. It enables continuous measurement of nano particle emissions in the size range between 5 and 1000 nm. Evaluations of particle number size distributions were conducted for diesel vehicles with a variety of emission aftertreatment devices and for gasoline vehicles with different combustion systems. For diesel vehicles, Diesel Oxidation Catalyst (DOC), urea-Selective Catalytic Reduction (urea-SCR) system and catalyzed Diesel Particulate Filter (DPF) were evaluated. For gasoline vehicles, Lean-burn Direct Injection Spark Ignition (DISI), Stoichiometric DISI and Multi Point Injection (MPI) were evaluated. Japanese latest transient test cycles were used for the evaluation: JE05 mode driving cycle for heavy duty vehicles and JC08 mode driving cycle for light duty vehicles.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Development of a Headway Distance Control System

1998-02-01
980616
This paper describes a headway distance control system for platoon driving on an automated highway system (AHS). The system implemented on a test vehicle is described first, followed by a description of a vehicle control method based on the use of throttle and brake actuators. This method makes it possible to obtain the target acceleration and deceleration regardless of the vehicle speed range and the rate of acceleration or deceleration. Experimental and simulation results obtained with this method are presented. A control method is then described that uses inter-vehicle communication and laser radar to maintain a constant headway between vehicles. The results of simulations and driving tests conducted with three vehicles are presented to illustrate that the use of inter-vehicle communication is highly effective in improving headway control performance.
Technical Paper

Information Services for Greater Driving Enjoyment

1998-02-23
980614
A prototype navigation system with cellular phone access to an information service center was constructed and evaluated. Center personnel can also operate the system remotely, in addition to providing traffic information and information for more enjoyable travel. Real-time conversation with a center operator is also possible. The system was rated positively by most of the subjects, especially the real-time voice service. This paper describes the car navigation market and cellular phone market in Japan, the system configuration, evaluation results and possible solutions to problems in the system. It also touches on the outlook for future car navigation systems and information services.
Technical Paper

Development of a High-Pressure Fueling System for a Direct-Injection Gasoline Engine

1998-05-04
981458
A direct-injection gasoline engine that uses a stratified charge combustion process was developed by Nissan and released in the Japanese market toward the end of 1997. This new engine is based on Nissan's VQ engine, which enjoys a good reputation for its quick throttle response and low fuel consumption, and has been developed to accomplish the objectives of reducing fuel consumption by stratified charge combustion and securing high power output. The fuel injectors are connected by an arrangement of lightweight, small-diameter fuel lines that distribute fuel to each injector under high pressure. This system was adopted in order to reconcile the use of an aerodynamic straight intake port with the desired fuel injection position. The use of a casting net injector, which uniformly distributes the fuel spray above the piston, makes it possible to accomplish stratified charge combustion with a shallow-bowl piston.
Technical Paper

Numerical Optimization of the Fuel Mixing Process in a Direct-Injection Gasoline Engine

1998-05-04
981440
The spray formation and mixing processes in a direct-injection gasoline engine are examined by using a sophisticated air flow calculation model and an original spray model. The spray model for a spiral injector can evaluate the droplet size and spatial distribution under a wide range of parameters such as the initial cone angle, back pressure and injection pressure. This model also includes the droplet breakup process due to wall impingement. The arbitrary constants used in the spray model are derived theoretically without using any experimental data. Fuel vapor distributions just before ignition and combustion processes are analyzed for both homogeneous and stratified charge conditions.
Technical Paper

Development of a Standalone Navigation and Audio-Visual System (Multi-AV System)

1990-02-01
900473
This paper describes the Multi-AV System featured in the 1989 model Nissan Cedric, Gloria, and CIMA. It is composed of a navigation system and an audio-visual system. The former system tracks the location of the vehicle and shows it on a CRT map display. This standalone navigation system has been achieved using a map-matching technique along with a terrestrial magnetic field sensor and wheel speed sensors installed at the wheels. Information on hotels, golf courses, Nissan dealers and other items can be obtained. A CD-ROM is employed as the memory. The audio-visual system consists of a radio, cassette deck, CD player, and TV. The Multi-AV System combines the practicality of a navigation function with the entertainment capabilities of an audio-visual system to satisfy diverse needs.
Technical Paper

Development of Diesel Engine System with DPF for the European Market

2007-04-16
2007-01-1061
Nissan Motor has put on the European SUV market a 2.2-L direct-injection diesel engine with a diesel particulate filter (DPF) system that complies with the EURO IV emission regulations. This paper describes the DPF system, cooperative control of a variable geometry turbo (VGT) and exhaust gas recirculation (EGR), and a high-accuracy lambda control adopted for this engine. In order to achieve a compact DPF, the high-accuracy lambda control was developed to reduce variation in engine-out particulate matter (PM) emissions. Moreover, the accuracy of the technique for predicting the quantity of PM accumulation was improved for reliable detection of the DPF regeneration. Prediction error for PM accumulation increases during transient operation. Control logic was adopted to correct the PM prediction according to lambda fluctuation detected by an observer for lambda at cylinder under transient operating conditions. The observer is corrected lambda sensor output.
Technical Paper

Road-load Input Contribution Analysis for Suspension Durability using a Multi-axial Road Simulator

2008-04-14
2008-01-1482
The durability test with road-load input is necessary for evaluating durability of body and chassis structure in automotive applications. This paper shows the method to analyze road-load input to a suspension system for development of a simple component level bench test. This method enables the extraction of the essential inputs to evaluate the durability of suspension parts using the transfer function (frequency response function) measured by Multi-axial Road Simulator and wheel force transducers. These extracted inputs contribute to development of a new realistic component bench test.
Technical Paper

Noise Detection Technology Development for Car Cabin

2008-04-14
2008-01-0272
Recently, it has been very important to reduce the noise, especially the Squeak and Rattle noise, for improving customer appeal of passenger vehicles. The Squeak and Rattle noise occurring inside the car cabin during vehicle operation is an especially large problem. This paper describes a newly developed measurement technology that uses the developed signal processing using the Beam-forming method and vibration sensor to identify the Squeak and Rattle noise sources, making it possible to determine effective countermeasures quickly. This new technology is used to identify all Squeak and Rattle noises at a time among many different noises, for example Wind noise, Engine noise and Road noise occurring during vehicle operation, and is expected to shorten substantially the time needed for noise analysis and contribute to quality improvements.
X