Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Cold Weather Wind Turbines - A Joint NASA/NSF/DOE Effort in Technology Transfer and Commercialization

1997-07-01
972510
Renewable energy sources and their integration with other power sources to support remote communities is of interest for Mars applications as well as Earth communities. The NSF, NASA, and DOE have been jointly supporting development of a 100 kW cold weather wind turbine through grants and SBIR's independently managed by each agency but coordinated by NASA. The NSF grant is specific to address issues associated with the South Pole Application and a 3 kW direct drive unit is currently being tested there in support of the development of the 100 kW unit. An NREL contract is focused on development of the 100 kW direct drive generator. The NASA SBIR is focused on development of the 100 kW direct drive wind turbine.
Technical Paper

An Evaluation of Potential Mars Transit Vehicle Water Treatment Systems

1998-07-13
981538
This paper compares four potential water treatment systems in the context of their applicability to a Mars transit vehicle mission. The systems selected for evaluation are the International Space Station system, a JSC bioreactor-based system, the vapor phase catalytic ammonia removal system, and the direct osmotic concentration system. All systems are evaluated on the basis of their applicability for use in the context of the Mars Reference Mission. Each system is evaluated on the basis of mass equivalency. The results of this analysis indicate that there is effectively no difference between the International Space Station system and the JSC bioreactor configurations. However, the vapor phase catalytic ammonia removal and the direct osmotic concentration systems offer a significantly lower mass equivalency (approximately 1/7 the ISS or bioreactor systems).
Technical Paper

Investigating the Partitioning of Inorganic Elements Consumed by Humans between the Various Fractions of Human Wastes - An Alternative Approach

2003-07-07
2003-01-2371
The elemental composition of food consumed by astronauts is well defined. The major elements carbon, hydrogen, oxygen, nitrogen and sulfur are taken up in large amounts and these are often associated with the organic fraction (carbohydrates, proteins, fats etc) of human tissue. On the other hand, a number of the elements are located in the extracellular fluids and can be accounted for in the liquid and solid waste fraction of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g. P, S and Cl and17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult healthy human, these elements should not normally accumulate in humans and will eventually be excreted in the different human wastes.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
Technical Paper

Incineration of Inedible Biomass in a Regenerative Life Support System - Update of Development Activities at ARC

2001-07-09
2001-01-2344
Of the many competing technologies for resource recovery from solid wastes for long duration manned missions such as a lunar or Mars base, incineration technology is one of the most promising and certainly the most well developed in a terrestrial sense. Various factors are involved in the design of an optimum fluidized bed incinerator for inedible biomass. The factors include variability of moisture in the biomass, the ash content, and the amount of fuel nitrogen in the biomass. The crop mixture in the waste will vary; consequently the nature of the waste, the nitrogen content, and the biomass heating values will vary as well. Variation in feed will result in variation in the amount of contaminants such as nitrogen oxides that are produced in the combustion part of the incinerator. The incinerator must be robust enough to handle this variability. Research at NASA Ames Research Center using the fluidized bed incinerator has yielded valuable data on system parameters and variables.
Technical Paper

Lyophilization for Water Recovery

2001-07-09
2001-01-2348
An energy-efficient lyophilization technique is being developed to recover water from highly contaminated spacecraft waste streams. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain water. To operate in microgravity, and to minimize power consumption, thermoelectric heat pumps can be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer is described and used to generate energy use and processing rate estimates.
Technical Paper

Practical Scheduling Considerations of Waste Heat Reuse for a Mars Mission Advanced Life Support System

2001-07-09
2001-01-2363
This paper builds on a steady-state investigation of waste heat reuse in an Advanced Life Support System (ALSS) for a Mars mission with a low degree of crop growth. In past studies, such a system has been defined in terms of technology types, hot and cold stream identification and stream energy content. The maximum steady-state potential for power and cooling savings within the system was computed via the Pinch Method. In this paper, the next step is taken toward achieving a pragmatic estimate of costs and savings associated with waste heat reuse in terms of equivalent system mass (ESM). In this paper, the assumption of steady-state flows are discarded, and a proposed schedule is developed for activities that are of interest in terms of waste heat reuse. The advanced life support system for the Mars Dual Lander Transit Vehicle is the system of interest.
Technical Paper

Crop Models for Varying Environmental Conditions

2002-07-15
2002-01-2520
New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models were developed to simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allowed only changes in light energy and used a less accurate linear approximation. For constant nominal environmental conditions, the simulation outputs of the new MEC models are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have more realistic exponential canopy growth, and have corrected harvest dates for potato and tomato.
Technical Paper

The Development of the Wiped-Film Rotating-Disk Evaporator for the Reclamation of Water at Microgravity

2002-07-15
2002-01-2397
This project is a Phase III SBIR contract between NASA and Water Reuse Technology (WRT). It covers the redesign, modification, and construction of the Wiped-Film Rotating-Disk (WFRD) evaporator for use in microgravity and its integration into a Vapor Phase Catalytic Ammonia Removal (VPCAR) system. VPCAR is a water processor technology for long duration space exploration applications. The system is designed as an engineering development unit specifically aimed at being integrated into NASA Johnson Space Center's Bioregenerative Planetary Life Support Test Complex (BIO-Plex). The WFRD evaporator and the compressor are being designed and built by WRT. The balance of the VPCAR system and the integrated package are being designed and built by Hamilton Sundstrand Space Systems International, Inc. (HSSSI) under a subcontract with WRT. This paper provides a description of the VPCAR technology and the advances that are being incorporated into the unit.
Technical Paper

NASA's Fundamental Aeronautics Subsonic Fixed Wing Project: Generation N+3 Technology Portfolio

2011-10-18
2011-01-2521
Commercial aviation relies almost entirely on subsonic fixed wing aircraft to constantly move people and goods from one place to another across the globe. While air travel is an effective means of transportation providing an unmatched combination of speed and range, future subsonic aircraft must improve substantially to meet efficiency and environmental targets. The NASA Fundamental Aeronautics Subsonic Fixed Wing (SFW) Project addresses the comprehensive challenge of enabling revolutionary energy-efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies, and the development of unconventional aircraft systems, offer the potential to achieve these improvements.
Technical Paper

Development of Water Treatment Systems for Use on NASA Crew Exploration Vehicle (CEV) and Lunar Surface Access Module (LSAM)

2006-07-17
2006-01-2012
NASA is currently developing two new human rated launch systems. They are the Crew Exploration Vehicle (CEV) and the Lunar Surface Access Module (LSAM). Both of these spacecraft will require new life support systems to support the crew. These life support systems can also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80% of the mass required to keep a person alive. As a result recycling water offers a high return on investment. Recycling water can also increase mission safety by providing an emergency supply of drinking water. This paper evaluates the potential benefits of two wastewater treatment technologies that have been designed to reduce the mass of the CEV and LSAM missions. For a 3 day CEV mission to the International Space Station (ISS) this approach could reduce the mass required to provide drinking water by 65% when compared to stored water. For an 18 day Lunar mission a mass savings of 70% is possible.
Technical Paper

The CELSS Antarctic Analog Project: A Validation of CELSS Methodologies at the South Pole Station

1993-07-01
932245
The CELSS Antarctic Analog Project (CAAP) is a joint NSF and NASA project tor the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. CAAP is implemented through the joint NSF/NASA Antarctic Space Analog Program (ASAP), initiated to support the pursuit of future NASA missions and to promote the transfer of space technologies to the NSF. As a joint endeavor, the CAAP represents an example of a working dual agency cooperative project. NASA goals are operational testing of CELSS technologies and the conduct of scientific study to facilitate technology selection, system design and methods development required for the operation of a CELSS. Although not fully closed, food production, water purification, and waste recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau.
Technical Paper

Development of an In-Flight Refill Unit for Replenishing Research Animal Drinking Water

1994-06-01
941283
The Spacelab Life Sciences 2 (SLS-2) mission became NASA's longest duration Shuttle mission, lasting fourteen days, when Columbia landed on November 1, 1993. Located within the Spacelab were a total of 48 laboratory rats which were housed in two Research Animal Holding Facilities (RAHFs) developed by the Space Life Sciences Payloads Office (SLSPO) at Ames Research Center. In order to properly maintain the health and well-being of these important research animals, sufficient quantities of food and water had to be available for the duration of the mission. An Inflight Refill Unit was developed by the SLSPO to replenish the animals' drinking water inflight using the Shuttle potable water system in the middeck galley as the source of additional water. The Inflight Refill Unit consists of two major subsystems, a Fluid Pumping Unit (FPU) and a Collapsible Water Reservoir (CWR).
Technical Paper

Characterization of Condensate from the Research Animal Holding Facility (RAHF)

1994-06-01
941506
Life Sciences research on Space Station will utilize rats to study the effects of the microgravity environment on mammalian physiology and to develop countermeasures to those effects for the health and safety of the crew. The animals will produce metabolic water which must be reclaimed to minimize logistics support. The condensate from the Research Animal Holding Facility (RAHF) flown on Spacelab Life Sciences-2 (SLS-2) in October 1993 was used as an analog to determine the type and quantity of constituents which the Space Station (SS) water reclamation system will have to process. The most significant organics present in the condensate were 2-propanol, glycerol, ethylene glycol, 1,2-propanediol, acetic acid, acetone, total proteins, urea and caprolactam while the most significant inorganic was ammonia. Microbial isolates included Xanthomonas, Sphingobacterium, Pseudomonas, Penicillium, Aspergillus and Chrysosporium.
Technical Paper

Vapor Phase Catalytic Ammonia Reduction

1994-06-01
941398
This paper discusses the development of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) teststand and the results of an experimental program designed to evaluate the potential of the technology as a water purification process. In the experimental program the technology is evaluated based upon product water purity, water recovery rate, and power consumption. The experimental work demonstrates that the technology produces high purity product water and attains high water recovery rates at a relatively high specific power consumption. The experimental program was conducted in 3 phases. In phase I an Igepon™ soap and water mixture was used to evaluate the performance of an innovative Wiped-Film Rotating-Disk evaporator and associated demister. In phase II a phenol-water solution was used to evaluate the performance of the high temperature catalytic oxidation reactor.
Technical Paper

Development of an Advanced Life Support Testbed at the Amundsen-Scott South Pole Station

1994-06-01
941610
This paper presents a description of the Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) and its functionality as a pilot study for the design of a future Lunar-Mars habitat. A description of the prototype development testbed, located at Ames Research, is provided as well as an analysis of the key design parameters. The CAAP program is tasked with the development of a life support testbed at the South Pole. This facility will include food production, waste processing, and in situ energy production capabilities. The testbed will provide NASA with a remote facility located in an extremely harsh environment which has been designed to provide a useful analog to the deployment of a future Lunar-Martian habitat. NASA's program goals are the operational testing of life support technologies and the conduct of scientific studies to facilitate future technology selection and system design.
Technical Paper

Lyophilization for Water Recovery III, System Design

2005-07-11
2005-01-3084
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents results of functional and performance tests.
Technical Paper

Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

2000-07-10
2000-01-2236
NASA’s planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceived and investigated by NASA’s Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material. The present paper presents the results of a series of proof-of-concept tests intended to characterize the thermal performance of STI over a range of operational conditions representative of those which will be encountered in use.
Journal Article

Lightweight Contingency Water Recovery System Concept Development

2008-06-29
2008-01-2143
The Lightweight Contingency Water Recovery System (LWC-WRS) harvests water from various sources in or around the Orion spacecraft in order to provide contingency water at a substantial mass savings when compared to stored emergency water supplies. The system uses activated carbon treatment (for urine) followed by forward osmosis (FO). The LWC-WRS recovers water from a variety of contaminated sources by directly processing it into a fortified (electrolyte and caloric) drink. Primary target water sources are urine, seawater, and other on board vehicle waters (often referred to as technical waters). The product drink provides hydration, electrolytes, and caloric requirements for crew consumption. The system hardware consists of a urine collection device containing an activated carbon matrix (Stage 1) and an FO membrane treatment element (or bag) which contains an internally mounted cellulose triacetate membrane (Stage 2).
X