Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Application of Singular Value Decomposition to Determine the Sources of Far Field Diesel Engine Noise

2013-05-13
2013-01-1974
The identification of the dominant noise sources in diesel engines and the assessment of their contribution to far-field noise is a process that can involve both fired and motored testing. In the present work, the cross-spectral densities of signals from cylinder pressure transducers, accelerometers mounted on the engine surface, and microphones (in the near and far fields), were used to identify dominant noise sources and estimate the transfer paths from the various “inputs” (i.e., the cylinder pressures, the accelerometers and the near field microphones) to the far field microphones. The method is based on singular value decomposition of the input cross-spectral matrix to relate the input measurements to independent virtual sources. The frequencies at which a particular input is strongly affected by an independent source are highlighted, and with knowledge of transducer locations, inferences can be drawn as to possible noise source mechanisms.
Journal Article

Modeling Weather Impact on Airport Arrival Miles-in-Trail Restrictions

2013-09-17
2013-01-2301
When the demand for either a region of airspace or an airport approaches or exceeds the available capacity, miles-in-trail (MIT) restrictions are the most frequently issued traffic management initiatives (TMIs) that are used to mitigate these imbalances. Miles-in-trail operations require aircraft in a traffic stream to meet a specific inter-aircraft separation in exchange for maintaining a safe and orderly flow within the stream. This stream of aircraft can be departing an airport, over a common fix, through a sector, on a specific route or arriving at an airport. This study begins by providing a high-level overview of the distribution and causes of arrival MIT restrictions for the top ten airports in the United States. This is followed by an in-depth analysis of the frequency, duration and cause of MIT restrictions impacting the Hartsfield-Jackson Atlanta International Airport (ATL) from 2009 through 2011.
Journal Article

Improved Model for Coupled Structural-Acoustic Modes of Tires

2015-06-15
2015-01-2199
Experimental measurements of tire tread band vibration have provided direct evidence that higher order structural-acoustic modes exist in tires, not just the well-known fundamental acoustical mode. These modes display both circumferential and radial pressure variations within the tire's air cavity. The theory governing these modes has thus been investigated. A brief recapitulation of the previously-presented coupled structural-acoustical model based on a tensioned string approach will be given, and then an improved tire-acoustical model with a ring-like shape will be introduced. In the latter model, the effects of flexural and circumferential stiffness are considered. This improved model accounts for propagating in-plane vibration in addition to the essentially structure-borne flexural wave and the essentially airborne longitudinal wave accounted for in the previous model. The longitudinal structure-borne wave “cuts on” at the tire's circumferential ring frequency.
Journal Article

Perception of Diesel Engine Gear Rattle Noise

2015-06-15
2015-01-2333
Component sound quality is an important factor in the design of competitive diesel engines. One component noise that causes complaints is the gear rattle that originates in the front-of-engine gear train which drives the fuel pump and other accessories. The rattle is caused by repeated tooth impacts resulting from fluctuations in differential torsional acceleration of the driving gears. These impacts generate a broadband, impulsive noise that is often perceived as annoying. In most previous work, the overall sound quality of diesel engines has been considered without specifically focusing on predicting the perception of gear rattle. Gear rattle level has been quantified based on angular acceleration measurements, but those measurements can be difficult to perform. Here, the emphasis was on developing a metric based on subjective testing of the perception of gear rattle.
Journal Article

Prechamber Hot Jet Ignition of Ultra-Lean H2/Air Mixtures: Effect of Supersonic Jets and Combustion Instability

2016-04-05
2016-01-0795
An experiment has been developed to investigate the ignition characteristics of ultra-lean premixed H2/air mixtures by a supersonic hot jet. The hot jet is generated by combustion of a stoichiometric mixture in a small prechamber. The apparatus adopted a dual-chamber design in which a small-volume (1% of the main chamber by volume) prechamber was installed within a large-volume main chamber. A small orifice (nozzle) connects the two chambers. Spark initiated combustion inside the prechamber causes a pressure rise and pushes the gases though the nozzle, resulting in a hot jet that would ignite the lean mixture in the main chamber. Simultaneous high-speed Schlieren photography and OH* Chemiluminescence were applied to visualize the jet penetration and the ignition processes inside the main chamber. Hot Wire Pyrometry (HWP) was used to measure temperature distribution of the transient hot jet.
Technical Paper

Design Optimization of Sandwich Composite Armors for Blast Mitigation Using Bayesian Optimization with Single and Multi-Fidelity Data

2020-04-14
2020-01-0170
The most common and lethal weapons against military vehicles are the improvised explosive devices (IEDs). In an explosion, critical cabin’s penetrations and high accelerations can cause serious injuries and death of military personnel. This investigation uses single and multi-fidelity Bayesian optimization (BO) to design sandwich composite armors for blast mitigation. BO is an efficient methodology to solve optimization problems that involve black-box functions. The black-box function of this work is the finite element (FE) simulation of the armor subjected to blast. The main two components of BO are the surrogate model of the black-box function and the acquisition function that guides the optimization. In this investigation, the surrogate models are Gaussian Process (GP) regression models and the acquisition function is the multi-objective expected improvement (MEI) function. Information from low and high fidelity FE models is used to train the GP surrogates.
Technical Paper

A New Approach of Generating Travel Demands for Smart Transportation Systems Modeling

2020-04-14
2020-01-1047
The transportation sector is facing three revolutions: shared mobility, electrification, and autonomous driving. To inform decision making and guide smart transportation system development at the city-level, it is critical to model and evaluate how travelers will behave in these systems. Two key components in such models are (1) individual travel demands with high spatial and temporal resolutions, and (2) travelers’ sociodemographic information and trip purposes. These components impact one’s acceptance of autonomous vehicles, adoption of electric vehicles, and participation in shared mobility. Existing methods of travel demand generation either lack travelers’ demographics and trip purposes, or only generate trips at a zonal level. Higher resolution demand and sociodemographic data can enable analysis of trips’ shareability for car sharing and ride pooling and evaluation of electric vehicles’ charging needs.
Journal Article

Fuel-Air Mixing Characteristics of DI Hydrogen Jets

2008-04-14
2008-01-1041
The following computational study examines the structure of sonic hydrogen jets using inlet conditions similar to those encountered in direct-injection hydrogen engines. Cases utilizing the same mass and momentum flux while varying exit-to-chamber pressure ratios have been investigated in a constant-volume computational domain. Furthermore, subsonic versus sonic structures have been compared using both hydrogen and ethylene fuel jets. Finally, the accuracy of scaling arguments to characterize an underexpanded jet by a subsonic “equivalent jet” has been assessed. It is shown that far downstream of the expansion region, the overall jet structure conforms to expectations for self-similarity in the far-field of subsonic jets. In the near-field, variations in fuel inlet-to-chamber pressure ratios are shown to influence the mixing properties of sonic hydrogen jets. In general, higher pressure ratios result in longer shock barrel length, though numerical resolution requirements increase.
Journal Article

NASA System-Level Design, Analysis and Simulation Tools Research on NextGen

2011-10-18
2011-01-2716
A review of the research accomplished in 2009 in the System-Level Design, Analysis and Simulation Tools (SLDAST) of the NASA's Airspace Systems Program is presented. This research thrust focuses on the integrated system-level assessment of component level innovations, concepts and technologies of the Next Generation Air Traffic System (NextGen) under research in the ASP program to enable the development of revolutionary improvements and modernization of the National Airspace System. The review includes the accomplishments on baseline research and the advancements on design studies and system-level assessment, including the cluster analysis as an annualization standard of the air traffic in the U.S. National Airspace, and the ACES-Air MIDAS integration for human-in-the-loop analyzes within the NAS air traffic simulation.
Journal Article

Autonomy and Intelligent Technologies for Advanced Inspection Systems

2013-09-17
2013-01-2092
This paper features a set of advanced technologies for autonomy and intelligence in advanced inspection systems of facility operations. These technologies offer a significant contribution to set a path to establish a system and an operating environment with autonomy and intelligence for inspection, monitoring and safety via gas and ambient sensors, video mining and speech recognition commands on unmanned ground vehicles and other platforms to support operational activities in the Cryogenics Test bed and other facilities and vehicles. These advanced technologies are in current development and progress and their functions and operations require guidance and formulation in conjunction with the development team(s) toward the system architecture.
Journal Article

Time-Varying Loads of Co-Axial Rotor Blade Crossings

2017-09-19
2017-01-2024
The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
Journal Article

Gerotor Pumps for Automotive Drivetrain Applications: A Multi Domain Simulation Approach

2011-09-13
2011-01-2272
This paper presents a simulation model for the analysis of internal gear ring pumps. The model follows a multi domain simulation approach comprising sub-models for parametric geometry generation, fluid dynamic simulation, numerical calculation of characteristic geometry data and CAD/FEM integration. The sub-models are interacting in different domains and relevant design and simulation parameters are accessible in a central, easy to handle graphical user interface. The potentials of the described tool are represented by simulation results for both steady state and transient pump operating conditions and by their correlation with measured data. Although the presented approach is suitable to all applications of gear ring pumps, a particular focus is given to hydraulic actuation systems used in automotive drivetrain applications.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

Assessment of Absorbers in Normal-Incidence Four- Microphone Transmission-Loss Systems to Measure Effectiveness of Materials in Lateral-Flow Configurations of Filled or Partially Filled Cavities

2007-05-15
2007-01-2190
The four-microphone standing wave tube system has proven useful for measuring the absorption and transmission loss of various fibrous and non-fibrous absorbers. The system is fast, repeatable, accurate and compact. This paper discusses the advantages of the four-microphone system for measuring the transmission loss in lateral-flow absorber systems. The original four-microphone round impedance tube system and the migration to a four-microphone square tube system are discussed. The four-microphone square tube system allows effective study of filled and partially filled cavities.
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
Technical Paper

Modeling and Simulation of an Electric Warship Integrated Engineering Plant

2006-11-07
2006-01-3050
A layered approach to the simulation of dynamically interdependent systems is presented. In particular, the approach is applied to the integrated engineering plant of a notional all-electric warship. The models and parameters of the notional ship are presented herein. This approach is used to study disruptions to the integrated engineering plant caused by anti-ship missiles. Example simulation results establish the effectiveness of this approach in examining the propagation of faults and cascading failures throughout a dynamically interdependent system of systems.
Technical Paper

Milestones in Airborne Astronomy: From the 1920's to the Present

1997-10-13
975609
The use of airplanes for astronomical observations began in the 1920's. From then until the early 1960's, almost all of the observations made from aircraft were for the purpose of viewing solar eclipses. Due to advances in technology and increasing interest in infrared astronomy, the use of airplanes for astronomy expanded during the 1960's to include planetary observations and a wide range of other studies. This paper describes some of the major milestones of airborne astronomy, from the1920's to the present.
Technical Paper

Development and Demonstration of a Prototype Free Flight Cockpit Display of Traffic Information

1997-10-01
975554
Two versions of a prototype Free Flight cockpit situational display (Basic and Enhanced) were examined in a simulation at the NASA Ames Research Center. Both displays presented a display of traffic out to a range of 120 NM, and an alert when the automation detected a substantial danger of losing separation with another aircraft. The task for the crews was to detect and resolve threats to separation posed by intruder aircraft. An Enhanced version of the display was also examined. It incorporated two additional conflict alerting levels and tools to aid in trajectory prediction and path planning. Ten crews from a major airline participated in the study. Performance analyses and pilot debriefings showed that the Enhanced display was preferred, and that minimal separation between the intruder and the ownship was larger with the Enhanced display. In addition, the additional information on the Enhanced display did not lead crews to engage in more maneuvering.
Technical Paper

Breakeven Mission Durations for Physicochemical Recycling to Replace Direct Supply Life Support

2007-07-09
2007-01-3221
The least expensive life support for brief human missions is direct supply of all water and oxygen from Earth without any recycling. The currently most advanced human life support system was designed for the International Space Station (ISS) and will use physicochemical systems to recycle water and oxygen. This paper compares physicochemical to direct supply air and water life support systems using Equivalent Mass (EM). EM breakeven dates and EM ratios show that physicochemical systems are more cost effective for longer mission durations.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
X