Refine Your Search

Topic

Author

Search Results

Journal Article

A History of Space Toxicology Mishaps: Lessons Learned and Risk Management

2009-07-12
2009-01-2591
After several decades of human spaceflight, the community of space-faring nations has accumulated a diverse and sometimes harrowing history of toxicological events that have plagued human space endeavors almost from the very beginning. Some lessons have been learned in ground-based test beds and others were discovered the hard way - when human lives were at stake in space. From such lessons one can build a risk-management framework for toxicological events to minimize the probability of a harmful exposure, while recognizing that we cannot predict all possible events. Space toxicologists have learned that relatively harmless compounds can be converted by air revitalization systems into compounds that cause serious harm to the crew.
Technical Paper

Neutral Buoyancy Portable Life Support System Performance Study

1991-07-01
911346
A system performance study on a portable life support system being developed for use in the Weightless Environment Training Facility (WETF) and the Neutral Buoyancy Laboratory (NBL) has been completed. The Neutral Buoyancy Portable Life Support System (NBPLSS) will provide life support to suited astronauts training for extravehicular activity (EVA) under water without the use of umbilicals. The basic configuration is characterized by the use of medium pressure (200 - 300 psi) cryogen (liquid nitrogen/oxygen mixture) which provides cooling within the Extravehicular Mobility Unit (EMU), the momentum which enables flow in the vent loop, and oxygen for breathing. NBPLSS performance was analyzed by using a modified Metabolic Man program to compare competing configurations. Maximum sustainable steady state metabolic rates and transient performance based on a typical WETF metabolic rate profile were determined and compared.
Technical Paper

Overview of Potable Water Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

2007-07-09
2007-01-3259
Providing water necessary to maintain life support has been accomplished in spacecraft vehicles for over forty years. This paper will investigate how previous U.S. space vehicles provided potable water. The water source for the spacecraft, biocide used to preserve the water on-orbit, water stowage methodology, materials, pumping mechanisms, on-orbit water requirements, and water temperature requirements will be discussed. Where available, the hardware used to provide the water and the general function of that hardware will also be detailed. The Crew Exploration Vehicle (CEV or Orion) water systems will be generically discussed to provide a glimpse of how similar they are to water systems in previous vehicles. Conclusions, questions, and recommendations on strategies that could be applied to CEV based on previous spacecraft water system lessons learned will be made.
Technical Paper

Development of a Test Facility for Air Revitalization Technology Evaluation

2007-07-09
2007-01-3161
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center (JSC) serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat by up to eight persons. A variety of gas analyzers and dew point sensors are used to monitor the chamber atmosphere and the process flow upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space.
Technical Paper

Digital Learning Network Education Events for the Desert Research and Technology Studies

2007-07-09
2007-01-3063
NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. As part of NASA's Strategic Plan to reach the next generation of space explorers, the DLN develops and delivers educational programs that reinforce principles in the areas of science, technology, engineering and mathematics. The DLN has created a series of live education videoconferences connecting the Desert Research and Technology Studies (RATS) field test to students across the United States. The programs are also extended to students around the world via live webcasting. The primary focus of the events is the Vision for Space Exploration. During the programs, Desert RATS engineers and scientists inform and inspire students about the importance of exploration and share the importance of the field test as it correlates with plans to return to the Moon and explore Mars. This paper describes the events that took place in September 2006.
Technical Paper

Digital Learning Network Education Events of 2006 NASA's Extreme Environments Mission Operations

2007-07-09
2007-01-3064
NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. The DLN has created a series of live education videoconferences connecting NASA's Extreme Environment Missions Operations (NEEMO) team to students across the United States. Programs are also extended to students around the world via live webcasting. The primary focus of the events is the vision for space exploration. During the programs, NEEMO crewmembers, including NASA astronauts, engineers and scientists, inform and inspire students about the importance of exploration and share the importance of the project as it correlates with plans to return to the moon and explore the planet Mars. These events highlight interactivity. Students talk live with the aquanauts in Aquarius, the National Oceanic and Atmospheric Administration's underwater laboratory located 4.5 kilometers off Key Largo in the Florida Keys National Marine Sanctuary.
Technical Paper

Reconfigurable Control System Design for Future Life Support Systems

2008-06-29
2008-01-1976
A reconfigurable control system is an intelligent control system that detects faults within the system and adjusts its performance automatically to avoid mission failure, save lives, and reduce system maintenance costs. The concept was first successfully demonstrated by NASA between December 1989 and March 1990 on the F-15 flight control system (SRFCS), where software was integrated into the aircraft's digital flight control system to compensate for component loss by reconfiguring the remaining control loop. This was later adopted in the Boeing X-33. Other applications include modular robotics, reconfigurable computing structure, and reconfigurable helicopters. The motivation of this work is to test such control system designs for future long term space missions, more explicitly, the automation of life support systems.
Technical Paper

The State of ISS ATCS Design, Assembly and Operation

2003-07-07
2003-01-2513
The International Space Station (ISS) Active Thermal Control System (ATCS) (Ref. 1,2) has changed over the past several years to address problems and to improve its assembly and operation on-orbit. This paper captures the ways in which the Internal (I) ATCS and External (E) ATCS have changed design characteristics and operations both for the system currently operating on-orbit and the new elements of the system that are about to be added and/or activated. The rationale for changes in ATCS design, assembly and operation will provide insights into the lessons learned during ATCS development. The state of the assembly of the integrated ATCS will be presented to provide a status of the build-up of the system. The capabilities of the on-orbit system will be presented with a summary of the elements of the ISS ATCS that are functional on-orbit plus the plans for launch of remaining parts of the integrated ISS ATCS.
Technical Paper

Development of a Gravity Independent Nitrification Biological Water Processor

2003-07-07
2003-01-2560
Biological water processors are currently being developed for application in microgravity environments. Work has been performed to develop a single-phase, gravity independent anoxic denitrification reactor for organic carbon removal [1]. As a follow on to this work it was necessary to develop a gravity independent nitrification reactor in order to provide sufficient nitrite and nitrate to the organic carbon oxidation reactor for the complete removal of organic carbon. One approach for providing the significant amounts of dissolved oxygen required for nitrification is to require the biological reactor design to process two-phase gas and liquid in micro-gravity. This paper addresses the design and test results overview for development of a tubular, two-phase, gravity independent nitrification biological water processor.
Technical Paper

Phase VI Advanced EVA Glove Development and Certification for the International Space Station

2001-07-09
2001-01-2163
Since the early 1980’s, the Shuttle Extra Vehicular Activity (EVA) glove design has evolved to meet the challenge of space based tasks. These tasks have typically been satellite retrieval and repair or EVA based flight experiments. With the start of the International Space Station (ISS) assembly, the number of EVA based missions is increasing far beyond what has been required in the past; this has commonly been referred to as the “Wall of EVA’s”. To meet this challenge, it was determined that the evolution of the current glove design would not meet future mission objectives. Instead, a revolution in glove design was needed to create a high performance tool that would effectively increase crewmember mission efficiency. The results of this effort have led to the design, certification and implementation of the Phase VI EVA glove into the Shuttle flight program.
Technical Paper

Food System Trade Study for an Early Mars Mission

2001-07-09
2001-01-2364
In preparation for future planetary exploration, the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) is currently being built at the NASA Johnson Space Center. The BIO-Plex facility will allow for closed chamber Earth-based tests. Various prepackaged food systems are being considered for the first 120-day BIO-Plex test. These food systems will be based on the Shuttle Training Menu and the International Space Station (ISS) Assembly Complete food systems. This paper evaluates several prepackaged food system options for the surface portion of an early Mars mission, based on plans for the first BIO-Plex test. The five systems considered are listed in Table 1. The food system options are assessed using equivalent system mass (ESM), which evaluates each option based upon the mass, volume, power, cooling and crewtime requirements.
Technical Paper

Immobilized Microbe Microgravity Water Processing System (IMMWPS) Flight Experiment Integrated Ground Test Program

2002-07-15
2002-01-2355
This paper provides an overview of the IMMWPS Integrated Ground Test Program, completed at the NASA Johnson Space Center (JSC) during October and November 2001. The JSC Crew and Thermal Systems Division (CTSD) has developed the IMMWPS orbital flight experiment to test the feasibility of a microbe-based water purifier for use in zero-gravity conditions. The IMMWPS design utilizes a Microbial Processor Assembly (MPA) inoculated with facultative anaerobes to convert organic contaminants in wastewater to carbon dioxide and biomass. The primary purpose of the ground test program was to verify functional operations and procedures. A secondary objective was to provide initial ground data for later comparison to on-orbit performance. This paper provides a description of the overall test program, including the test article hardware and the test sequence performed to simulate the anticipated space flight test program. In addition, a summary of significant results from the testing is provided.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

2006-07-17
2006-01-2201
Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

Environmental Control System for an Experimental Crew Return Vehicle

1997-07-01
972263
A small team of NASA engineers has been assembled at the Johnson Space Center, with the goal of developing an inexpensive space-capable vehicle. In order to minimize cost and development time of the experimental vehicle, it was desirable to build upon a previously-developed vehicle shape. The basic shape of the X-24A experimental lifting body was chosen for several reasons, and in the case of the Environmental Control and Life Support (ECLS), the de-orbit cross-range capability of this shape provides for a minimal on-orbit time while waiting for landing opportunities, which in turn simplifies the ECLS. Figure 1 shows the X-38 vehicle body shape. In keeping with the goal of rapidly developing an inexpensive and reliable vehicle, the ECLS was developed using simple, passive systems where practical. This paper provides an overview of the ECLS mission requirements and design, with emphasis on the philosophy used in its development.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Design of a Water Electrolysis Flight Experiment

1993-07-01
932087
Supply of oxygen (O2) and hydrogen (H2) by electrolyzing water in space will play an important role in meeting the National Aeronautics and Space Administration's (NASA's) needs and goals for future space missions. Both O2 and H2 are envisioned to be used in a variety of processes including crew life support, spacecraft propulsion, extravehicular activity, electrical power generation/storage as well as in scientific experiment and manufacturing processes. Life Systems, Inc., in conjunction with NASA, has been developing an alkaline-based Static Feed Electrolyzer (SFE). During the development of the water electrolysis technology over the past 23 years, an extensive engineering and scientific data base has been assembled.
Technical Paper

Performance Evaluation of Candidate Space Suit Elements for the Next Generation Orbital EMU

1992-07-01
921344
The projections of increased Extravehicular Activity (EVA) operations for the Space Station Freedom (SSF) resulted in the development of advanced space suit technologies to increase EVA efficiency. To eliminate the overhead of denitrogenation, candidate higher-operating pressure suit technologies were developed. The AX-5 all metallic, multi-bearing technologies were developed at the Ames Research Center, and the Mk. III fabric and metallic technologies were developed at the Johnson Space Center. Following initial technology development, extensive tests and analyses were performed to evaluate all aspects of candidate technology performance. The current Space Shuttle space suit technologies were used as a baseline for evaluating those of the AX-5 and Mk. III. Tests included manned evaluations in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft.
Technical Paper

EVA Operational Enhancements and ASEM

1992-07-01
921341
Among the many firsts which will occur on STS-49, the maiden voyage of the Space Shuttle Endeavour, a Space Station Freedom (SSF) experiment entitled Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) promises to test the boundaries of EVA operational capabilities. Should the results be favorable, station and other major users of EVA stand to benefit from increased capabilities. Even the preparation for the ASEM experiment is serving as a pathfinder for complex SSF operations. This paper reviews the major tasks planned for ASEM and discusses the operational analogies investigators are attempting to draw between ASEM and SSF. How these findings may be applied to simplify station assembly and maintenance will also be discussed.
Technical Paper

Manned Space Exploration and Life Support - Strategies, Milestones, and Limitations

1995-07-01
951532
A rationale will be presented,as to why a lunar base should be the next logical step of a future scenario for manned space flight preceding a flight to Mars. In this respect, the lunar base and the Mars flight examples and their life support systems will be addressed. An overview of past experiences, especially Apollo, and the current knowledge is given concerning both lunar missions and life support systems. Also, critical areas of mission design and preparation, like the necessity of precursor missions, the potential of resource utilization, radiation shielding, and life support system evolution, are addressed. This paper decribes a general development scenario for future manned missions to the Moon and Mars and why a “dress rehearsal” of a mission to Mars in the Earth-Moon-system will be necessary, and what lessons can be learned from the development of a lunar base for missions to Mars.
X