Refine Your Search

Topic

Author

Search Results

Technical Paper

A Summary of Reynolds Number Effects on Some Recent Tests in the Langley 0.3-Meter Transonic Cryogenic Tunnel

1986-10-01
861765
Reynolds number effects noted from selected test programs conducted in the Langiey 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) are discussed. The tests, which cover a unit Reynolds number range from about 2.0 to 80.0 million per foot, summarize effects of Reynolds number on: 1) aerodynamic data from a supercritical airfoil, 2) results from several wall interference correction techniques, and 3) results obtained from advanced, cryogenic test techniques. The test techniques include 1) use of a cryogenic sidewall boundary layer removal system, 2) detailed pressure and hot wire measurements to determine test section flow quality, and 3) use of a new hot film system suitable for transition detection in a cryogenic wind tunnel. The results indicate that Reynolds number effects appear most significant when boundary layer transition effects are present and at high lift conditions when boundary layer separation exists on both the model and the tunnel sidewall.
Technical Paper

New NASA Transport Research Facilities to Support Research Flight Operations in Present and Future ATC Environments

1997-10-13
975641
The NASA Langley Research Center is developing a set of Transport Research Facilities which will support a simulation-to-flight process that will improve the efficiency of conducting experiments from concept development, to ground-based simulation testing, to flight testing. A key facility is a modified B-757-200 airplane containing an onboard research system. This aircraft is replacing the existing NASA B-737-100 Transport Systems Research Vehicle. The other Transport Research Facilities include two simulator cabs, a Research System Integration Laboratory, and the associated software. These facilities will support research flight operations associated with the present and future air traffic control environments.
Technical Paper

Application of Temperature Sensitive Paint Technology to Boundary Layer Analysis

1997-10-01
975536
Temperature Sensitive Paint (TSP) technology coupled with the Reynolds number capability of modern wind tunnel test facilities produces data required for continuing development of turbulence models, stability codes, and high performance aerodynamic design. Data in this report include: the variation in transition location with Reynolds number in the boundary layer of a two-dimensional high speed natural laminar flow airfoil (HSNLF) model; additional bypass mechanisms present, such as surface roughness elements; and, shock-boundary layer interaction. Because of the early onset of turbulent flow due to surface roughness elements present in testing, it was found that elements from all these data were necessary for a complete analysis of the boundary layer for the HSNLF model.
Technical Paper

Development of Race Car Testing at the Langley Full-Scale Tunnel

1998-11-16
983040
This paper reviews the development of a new test capability for race cars at the Langley Full-Scale Tunnel. The existing external force balance of the Langley Full-Scale Tunnel, designed for use with full-scale aircraft, was reconfigured for automobile testing. Details of structural modifications relevant to supporting cars and force measurements are shown. A specialized automobile force balance, measuring vehicle drag and individual wheel downforce, was then designed, constructed and calibrated. The design was governed by simplicity and low cost and was tailored to the stock car racing community. The balance became fully operational in early 1998. The overall layout of the automobile balance and comparisons to reference data from another full-scale wind tunnel is presented.
Technical Paper

Neutron Environment Calculations for Low Earth Orbit

2001-07-09
2001-01-2327
The long term exposure of astronauts on the developing International Space Station (ISS) requires an accurate knowledge of the internal exposure environment for human risk assessment and other onboard processes. The natural environment is moderated by the solar wind, which varies over the solar cycle. The HZETRN high charge and energy transport code developed at NASA Langley Research Center can be used to evaluate the neutron environment on ISS. A time dependent model for the ambient environment in low earth orbit is used. This model includes GCR radiation moderated by the Earth’s magnetic field, trapped protons, and a recently completed model of the albedo neutron environment formed through the interaction of galactic cosmic rays with the Earth’s atmosphere. Using this code, the neutron environments for space shuttle missions were calculated and comparisons were made to measurements by the Johnson Space Center with onboard detectors.
Technical Paper

Deep Space Mission Radiation Shielding Optimization

2001-07-09
2001-01-2326
Providing protection against the hazards of space radiation is a major challenge to the exploration and development of space. The great cost of added radiation shielding is a potential limiting factor in deep space missions. In the present report, we present methods for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of lunar and Mars missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints.
Technical Paper

International Space Station Radiation Shielding Model Development

2001-07-09
2001-01-2370
The projected radiation levels within the International Space Station (ISS) have been criticized by the Aerospace Safety Advisory Panel in their report to the NASA Administrator. Methods for optimal reconfiguration and augmentation of the ISS shielding are now being developed. The initial steps are to develop reconfigurable and realistic radiation shield models of the ISS modules, develop computational procedures for the highly anisotropic radiation environment, and implement parametric and organizational optimization procedures. The targets of the redesign process are the crew quarters where the astronauts sleep and determining the effects of ISS shadow shielding of an astronaut in a spacesuit. The ISS model as developed will be reconfigurable to follow the ISS. Swapping internal equipment rack assemblies via location mapping tables will be one option for shield optimization.
Technical Paper

Collaborative Engineering Methods for Radiation Shield Design

2001-07-09
2001-01-2367
The hazards of ionizing radiation in space continue to be a limiting factor in the design of spacecraft and habitats. Shielding against such hazards adds to the mission costs and is even an enabling technology in human exploration and development of space. We are developing a web accessible system for radiation hazard evaluation in the design process. The framework for analysis and collaborative engineering is used to integrate mission trajectory, environmental models, craft materials and geometry, system radiation response functions, and mission requirements for evaluation and optimization of shielding distribution and materials. Emphasis of the first version of this integrated design system will address low Earth orbit allowing design system validation using STS, Mir, and ISS measurements. The second version will include Mars, lunar, and other deep space mission analysis.
Technical Paper

Ionizing Radiation: Multifunctionality and MDO Processes

2002-07-15
2002-01-2334
Traditionally radiation protection is left for evaluation after the completion of other engineering design processes followed by design changes to improve protection leading to off-optimum solutions of design problems. This project is a first attempt to develop optimization procedures with radiation constraint components from the beginning of the design process allowing performance optimization at reduced costs. The traditional limitation of radiation constraint analysis has been the slow computation time and the main focus thus far has been to apply high-performance computing to shielding analysis in preparation for MDO processes. We will describe the problem formulation, the framework for optimization, and progress towards developing highspeed computational procedures.
Technical Paper

Shield Optimization in Simple Geometry for the Gateway Concept

2002-07-15
2002-01-2332
The great cost of added radiation shielding is a potential limiting factor in many deep space missions. For this enabling technology, we are developing tools for optimized shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of various space missions. The total shield mass over all pieces of equipment and habitats is optimized subject to career dose and dose rate constraints. Preliminary studies of deep space missions indicate that for long duration space missions, improved shield materials will be required. The details of this new method and its impact on space missions and other technologies will be discussed. This study will provide a vital tool for evaluating Gateway designs in their usage context. Providing protection against the hazards of space radiation is one of the challenges to the Gateway infrastructure designs.
Technical Paper

Inter-Crew Shielding Against a Solar Particle Event in L1

2002-07-15
2002-01-2335
All but a small fraction of human space radiation exposure has been in Low Earth Orbit (LEO) where significant protection from extraterrestrial ionizing radiation is provided as a result of its deflection in the Earth's magnetic field. The placement of a manned outpost at the L1 Lagrange Point could mark the first long-term venture into a “deep space” radiation environment, giving rise to the associated problems of long-term space exposure. One of the first issues to address is providing protection within an L1 station from a large solar particle event. A safe haven area could be used over the duration of the event or one may consider the sleep stations where it is already necessary to have added shielding. The surrounding bodies of other closely packed crewmembers in such a shelter are expected to provide a significant fraction of a crewmember's total shielding.
Technical Paper

A Comparison of Pressure Sensitive Paint (PSP) Techniques for Aerodynamic Testing at Slow Velocities

2002-03-04
2002-01-0255
Pressure Sensitive Paint (PSP) has been used for several years by the aircraft industry in transonic wind tunnel testing where the oxygen concentrations are low and the luminescence of the paint is easily recorded. Extending PSP to slower speeds where the oxygen concentrations are closer to atmospheric conditions is much more challenging. For the past few years, work has been underway at both Wright Patterson Air Force Base and Ford Motor Company to advance PSP techniques for testing at slower speeds. The CRADA (Cooperative Research and Development Agreement) provided a way for comparisons to be made of the different PSP systems that were being investigated. This paper will report on PSP tests conducted as part of the CRADA.
Technical Paper

The Efficacy of Using Synthetic Vision Terrain-Textured Images to Improve Pilot Situation Awareness

2002-11-05
2002-01-2970
The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study is being conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and performance.
Technical Paper

Wind-Tunnel Investigation of Commercial Transport Aircraft Aerodynamics at Extreme Flight Conditions

2002-11-05
2002-01-2912
A series of low-speed static and dynamic wind tunnel tests of a commercial transport configuration over an extended angle of attack/sideslip envelope was conducted at NASA Langley Research Center. The test results are intended for use in the development of an aerodynamic simulation database for determining aircraft flight characteristics at extreme and loss-of-control conditions. This database will be used for the development of loss-of-control prevention or mitigation systems, pilot training for recovery from such conditions, and accident investigations. An overview of the wind-tunnel tests is presented and the results of the tests are evaluated with respect to traditional simulation database development techniques for modeling extreme conditions to identify regions where simulation fidelity should be addressed.
Technical Paper

Performance Automotive Applications of Pressure-Sensitive Paint in the Langley Full Scale Tunnel

2002-12-02
2002-01-3291
Recently, there has been a strong emphasis on aerodynamic and aeroacoustic wind tunnel testing of automobiles. While significant level resources have been spent on investigating aerodynamics, the methodology has not changed appreciably since the beginning of aerodynamics as a science. Over the past decade, a number of global flow diagnostic techniques have been developed that drastically increase the quality and quantity of data from wind tunnel testing. One of these technologies is the use of pressure sensitive luminescent coatings, known as pressure-sensitive paint, a method which has matured considerably since its inception and is now used extensively in aerospace applications with good results. The goal of this research is to implement this technology in the full scale testing of high performance automotive vehicles. This paper discusses the details of a preliminary test, such as technique, paint formulation, camera and lighting hardware, and data reduction and analysis.
Technical Paper

Application of Laminar Flow Control to High-Bypass-Ratio Turbofan Engine Nacelles

1991-09-01
912114
Recently, the concept of the application of hybrid laminar flow to modern commercial transport aircraft was successfully flight tested on a Boeing 757 aircraft. In this limited demonstration, in which only part of the upper surface of the swept wing was designed for the attainment of laminar flow, significant local drag reduction was measured. This paper addresses the potential application of this technology to laminarize the external surface of large, modern turbofan engine nacelles which may comprise as much as 5-10 percent of the total wetted area of future commercial transports. A hybrid-laminar-fiow-control (HLFC) pressure distribution is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer. Performance studies are presented to determine potential benefits in terms of reduced fuel consumption.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

Wingtip Vortex Turbine Investigation for Vortex Energy Recovery

1990-09-01
901936
A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15° twist (washin) and one with no twist. The power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.
Technical Paper

Spacesuit Radiation Shield Design Methods

2006-07-17
2006-01-2110
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable.
Technical Paper

The Third Wave of Aeronautics: On-Demand Mobility

2006-08-30
2006-01-2429
Aviation has experienced one hundred years of dynamic growth and change, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. The first fifty years of aviation was a very chaotic, rapid evolutionary process involving disruptive technologies that required frequent adaptation. The second fifty years produced a stable evolutionary optimization of services based on achieving an objective function of decreased costs. In the third wave of aeronautics over the next fifty years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient, and environmentally fare and friendly system.
X