Refine Your Search

Topic

Search Results

Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

A Simplified Orbit Analysis Program for Spacecraft Thermal Design

1997-07-01
972540
This paper presents a simplified orbit analysis program developed to calculate orbital parameters for the thermal analysis of spacecraft and space-flight instruments. The program calculates orbit data for inclined and sunsynchronous earth orbits. Traditional orbit analyses require extensive knowledge of orbital mechanics to produce a simplified set of data for thermal engineers. This program was created to perform orbital analyses with minimal input and provides the necessary output for thermal analysis codes. Engineers will find the program to be a valuable analysis tool for fast and simple orbit calculations. A description of the program inputs and outputs is included. An overview of orbital mechanics for inclined and Sun-synchronous orbits is also presented. Finally, several sample cases are presented to illustrate the thermal analysis applications of the program.
Technical Paper

Performance Automotive Applications of Pressure-Sensitive Paint in the Langley Full Scale Tunnel

2002-12-02
2002-01-3291
Recently, there has been a strong emphasis on aerodynamic and aeroacoustic wind tunnel testing of automobiles. While significant level resources have been spent on investigating aerodynamics, the methodology has not changed appreciably since the beginning of aerodynamics as a science. Over the past decade, a number of global flow diagnostic techniques have been developed that drastically increase the quality and quantity of data from wind tunnel testing. One of these technologies is the use of pressure sensitive luminescent coatings, known as pressure-sensitive paint, a method which has matured considerably since its inception and is now used extensively in aerospace applications with good results. The goal of this research is to implement this technology in the full scale testing of high performance automotive vehicles. This paper discusses the details of a preliminary test, such as technique, paint formulation, camera and lighting hardware, and data reduction and analysis.
Technical Paper

Next Generation NASA GA Advanced Concept

2006-08-30
2006-01-2430
Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

NASA Personal Air Transportation Technologies

2006-08-30
2006-01-2413
The ability to personalize air travel through the use of an on-demand, highly distributed air transportation system will provide the degree of freedom and control that Americans enjoy in other aspects of their life. This new capability, of traveling when, where, and how we want with greatly enhanced mobility, accessibility, and speed requires vehicle and airspace technologies to provide the equivalent of an internet PC ubiquity, to an air transportation system that now exists as a centralized hub and spoke mainframe NASA airspace related research in this new category of aviation has been conducted through the Small Aircraft Transportation (SATS) project, while the vehicle technology efforts have been conducted in the Personal Air Vehicle sector of the Vehicle Systems Program.
Technical Paper

The Third Wave of Aeronautics: On-Demand Mobility

2006-08-30
2006-01-2429
Aviation has experienced one hundred years of dynamic growth and change, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. The first fifty years of aviation was a very chaotic, rapid evolutionary process involving disruptive technologies that required frequent adaptation. The second fifty years produced a stable evolutionary optimization of services based on achieving an objective function of decreased costs. In the third wave of aeronautics over the next fifty years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient, and environmentally fare and friendly system.
Technical Paper

The Effect of Runway Surface and Braking on Shuttle Orbiter Main Gear Tire Wear

1992-10-01
922038
In 1988, a 1067 m long touchdown zone on each end of the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) was modified from its original heavy-broom finish with transverse grooves configuration to a longitudinal corduroy surface texture with no transverse grooves. The intent of this modification was to reduce the spin-up wear on the Orbiter main gear tires and provide for somewhat higher crosswind capabilities at that site. The modification worked well, so it was proposed that the remainder of the runway be modified as well to permit even higher crosswind landing capability. Tests were conducted at the NASA Langley Aircraft Landing Dynamics Facility (ALDF) to evaluate the merit of such a modification. This paper discusses the results of these tests, and explains why the proposed modification did not provide the expected improvement and thus was not implemented.
Technical Paper

Recent Developments of Experimental Techniques and Their Applications at NASA Langley Research Center

1994-03-01
940419
The need for highly accurate measurements of velocity, temperature, pressure and density has required the development of new experimental techniques. While the majority of these development efforts at NASA Langley are focused toward applications for aeronautical programs such as the High-Speed Civil Transport, Advanced Subsonic Transport, and the National Aero-Space Plane, a number are applicable to other fields. The intent of this paper is to review recent instrumentation developments and applications at NASA Langley Research Center that may have applications in automotive testing. Five experimental techniques are described along with recent results obtained in NASA facilities.
Technical Paper

Overview of Noise Reduction Technology in the NASA Short Haul (Civil Tiltrotor) Program

1996-11-18
962273
Noise is a barrier issue for penetration of civil markets by future tiltrotor aircraft. To address this issue, elements of the NASA Short Haul (Civil Tiltrotor) [SH(CT)] program are working in three different areas: noise abatement, noise reduction, and noise prediction. Noise abatement refers to modification of flight procedures to achieve quieter approaches. Noise reduction refers to innovative new rotor designs that would reduce the noise produced by a tiltrotor. Noise prediction activities are developing the tools to guide the design of future quiet tiltrotors. This paper presents an overview of SH(CT) activities in all three areas, including sample results.
Technical Paper

NASA Aerodynamic Research Applicable to Business Aircraft

1971-02-01
710378
A review is made of NASA aerodynamic research of interest to the designer of business aircraft. The results of wind-tunnel and flight studies of several current aircraft are summarized. The attainment of STOL performance is discussed and the effectiveness of several lift augmentation concepts is examined. Finally, the potentialities and problems of flight at and beyond the speed of sound are discussed.
Technical Paper

Elements Affecting Runway Traction

1974-02-01
740496
The five basic elements affecting runway traction for jet transport aircraft operation are identified and described in terms of pilot, aircraft system, atmospheric, tire, and pavement performance factors or parameters. Runway traction is so affected by the interaction of these elements that it becomes an impossible task to discuss the effects of each element individually. For this reason, this paper discusses runway traction under the general headings of dry, wet and flooded, and snow and ice conditions. Where possible, research results are summarized, and means for restoring or improving runway traction for these different conditions are discussed.
Technical Paper

The All Electric Airplane - Benefits and Challenges

1982-02-01
821434
A brief definition of an “All Electric Airplane” will be presented. Several NASA and DOD studies have examined the application of advanced electric/electronic technologies. The benefits identified in these studies will be summarized. The state-of-the-art in all electric airplane technology will be described. A NASA program has been proposed to develop the necessary technology base for industry application. The elements of this proposed program will be discussed.
Technical Paper

Review of NASA Antiskid Braking Research

1982-02-01
821393
NASA antiskid braking system research programs are reviewed. These programs include experimental studies of four antiskid systems on the Langley Landing Loads Track, flight tests with a DC-9 airplane, and computer simulation studies. Results from these research efforts include identification of factors contributing to degraded antiskid performance under adverse weather conditions, tire tread temperature measurements during antiskid braking on dry runway surfaces, and an assessment of the accuracy of various brake pressure-torque computer models. This information should lead to the development of better antiskid systems in the future.
Technical Paper

The Generation of Tire Cornering Forces in Aircraft with a Free-Swiveling Nose Gear

1985-10-01
851939
Various conditions can cause an aircraft to assume a roll or tilt angle on the runway, causing the nose tire(s) to produce significant uncommanded cornering forces if the nose gear is free to swivel. An experimental investigation was conducted using a unique towing system to measure the cornering forces generated by a tilted aircraft tire. The effects of various parameters on these cornering forces including tilt angle, trail, rake angle, tire inflation pressure, vertical load, and twin-tire configuration were evaluated. Corotating twin-tires produced the most severe cornering forces due to tilt angle. A discussion of certain design and operational considerations is included.
Technical Paper

Aircraft Landing Dynamics Facility, A Unique Facility with New Capabilities

1985-10-01
851938
The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisions are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.
Technical Paper

Simulation Study of an Automatic Trim System for Reducing the Control Forces on a Light Twin After an Engine Failure

1985-04-01
850913
An automatic trim system for reducing the control forces after an engine failure on a light twin has been investigated on the Langley General Aviation Simulator. The system schedules open-loop trim tab deflections as a function of differential propeller slipstream dynamic pressure and freestream dynamic pressure. The system is described and the airplane-system static and dynamic characteristics are documented. Three NASA research pilots evaluated the effectiveness of the system for takeoff and landing maneuvers. A variety of off-nominal system characteristics were studied. The system was judged to be generally beneficial, providing a 2 to 3 point improvement in pilot rating for the tasks used in the evaluations.
Technical Paper

Fifty Years of Laminar Flow Flight Testing

1988-10-01
881393
Laminar flow flight experiments conducted over the past fifty years will be reviewed. The emphasis will be on flight testing conducted under the NASA Laminar Flow Control Program which has been directed towards the most challenging technology application- the high subsonic speed transport. The F111/TACT NLF Glove Flight Test, the F-14 Variable Sweep Transition Flight Experiment, the 757 Wing Noise Survey and NLF Glove Flight Test, the NASA Jetstar Leading Edge Flight Test Program, and the recently initiated Hybrid Laminar Flow Control Flight Experiment will be discussed. To place these recent experiences in perspective, earlier important flight tests will first be reviewed to recall the lessons learned at that time.
Technical Paper

Tire and Runway Surface Research

1986-11-01
861618
The condition of aircraft tires and runway surfaces can be crucial in meeting the stringent demands of aircraft ground operations, particularly under adverse weather conditions. Gaining a better understanding of the factors influencing the tire/pavement interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from several studies conducted at the Langley Aircraft Landing Dynamics Facility, tests with instrumented ground vehicles and aircraft, and some recent aircraft accident investigations are summarized to indicate effects of different tire and runway properties. The Joint FAA/NASA Runway Friction Program is described together with some preliminary test findings. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/pavement interface is given.
Technical Paper

Flow Rate and Trajectory of Water Spray Produced by an Aircraft Tire

1986-10-01
861626
One of the risks associated with wet runway aircraft operation is the ingestion of water spray produced by an aircraft's tires into its engines. This problem can be especially dangerous at or near rotation speed on the takeoff roll. An experimental investigation was conducted in the NASA Langley Research Center Hydrodynamics Research Facility to measure the flow rate and trajectory of water spray produced by an aircraft nose tire operating on a flooded runway. The effects of various parameters on the spray patterns including distance aft of nosewheel, speed, load, and water depth were evaluated. Variations in the spray pattern caused by the airflow about primary structure such as the fuselage and wing are discussed. A discussion of events in and near the tire footprint concerning spray generation is included.
X