Refine Your Search

Topic

Author

Search Results

Video

New Design Concept for Diesel Particulate Filter

2012-02-16
This session focuses on particle emissions from combustion engines, including measurement methods and fuel effects. Presenter Leonidas D. Ntziachristos, Aristotle University Thessaloniki
Video

New Particulate Matter Sensor for On Board Diagnosis

2012-02-16
The presentation describes technology developments and the integration of these technologies into new emission control systems. As in other years, the reader will find a wide range of topics from various parts of the world. This is reflective of the worldwide scope and effort to reduce diesel exhaust emissions. Topics include the integration of various diesel particulate matter (PM) and Nitrogen Oxide (NOx) technologies as well as sensors and other emissions related developments. Presenter Atsuo Kondo, NGK Insulators, Ltd.
Technical Paper

Thick Film ZrO2 NOx Sensor for the Measurement of Low NOx Concentration

1998-02-01
980170
A practical ZrO2 NOx sensor using dual oxygen pumping cells has been introduced for the control of NOx emitted from a lean-burn gasoline engine and diesel engine.(1),(2). However, the measuring accuracy was not high enough to be useful for controlling or monitoring a low level of NOx concentration such as several tens ppm behind a three way catalyst or lean NOx catalyst which is NOx adsorption or De-NOx catalyst. This paper describes improvement of the interference effect of oxygen in the exhaust gas from the lean-burn gasoline engine and diesel engine. The cause of oxygen dependency is analyzed/revealed and a method of improvement is introduced. The improved NOx sensor has an approximately · · 2% measuring error in the wide range of oxygen concentration on a model gas system, compared to the · ·10% of the previous one.
Technical Paper

In-line Hydrocarbon Adsorber for Cold Start Emissions - Part II

1998-02-23
980423
The in-line hydrocarbon (HC) adsorber is a passive after-treatment technology to address cold-start hydrocarbons in automotive engine exhaust gas. A major technical challenge of the in-line HC adsorber is the difference between the HC release temperature of the adsorber and the light-off temperature of the burn-off (BO) Catalyst. We call this phenomenon the “reversed-temperature difference”. To reduce the reversed temperature difference, NGK has proposed a new “In-line HC Adsorber System” which consists of light-off (LO) Catalyst + Barrel Zeolite Adsorber (BZA), with a hole through the center, BO Catalyst and secondary air injection management (SAE 970266). This, our latest paper, describes the evaluation of various adsorbents and the effect of the center hole on the Adsorber BZA. The adsorber system, which had the Adsorber BZA with a 25mm ϕ center hole and adsorbent coated, confirmed 30% lower FTP NMHC emission versus a system with no center hole or adsorbent coating.
Technical Paper

Reduction of Wall Thickness of Ceramic Substrates for Automotive Catalysts

1990-02-01
900614
Ceramic honeycombs have been used as automotive catalyst supports in US, Japan, Europe and other highly urbanized countries. Now, engine output is a great concern for automanufacturers, and reduction of the wall thickness of honeycomb substrates became indespensable for maintenance of gas flow restriction to a certain low level. To reduce wall thickness, material should be strong to maintain canning strength of substrates. Mechanical strength was improved with high density cordierite. However, isostatic strength of whole substrates was still insufficient with reduced thin walls for canning in spite of the material's high mecanical strength. Discussion is carried out on further possibility of improving canning performance of thin wall substrates as well as flow restriction, and warm up characteristics.
Technical Paper

Study on Next Generation Diesel Particulate Filter

2009-04-20
2009-01-0292
Although diesel engines are superior to gasoline engines in terms of the demand to reduce CO2 emissions, diesel engines suffer from the problem of emitting Particulate Matter (PM). Therefore, a Diesel Particulate Filter (DPF) has to be fitted in the engine exhaust aftertreatment system. From the viewpoint of reducing CO2 emissions, there is a strong demand to reduce the exhaust system pressure drop and for DPF designs that are able to help reduce the pressure drop. A wall flow DPF having a novel wall pore structure design for reducing pressure drop, increasing robustness and increasing filtration efficiency is presented. The filter offers a linear relationship between PM loading and pressure drop, offering lower pressure drop and greater accuracy in estimating the accumulated PM amount from pressure drop. First, basic experiments were performed on small plate test samples having various pore structure designs.
Technical Paper

Engine Bench and Vehicle Durability Tests of Si bonded SiC Particulate Filters

2004-03-08
2004-01-0952
Modern filter systems allow a significant reduction of diesel particulate emissions. The new silicon bonded silicon carbide particulate filters (Si-SiC filters) play an important role in this application, because they provide flexibility in terms of mean pore size and porosity and also have a high thermal shock capability to meet both engineering targets and emission limits for 2005 and beyond. Particulate filters are exposed to high temperatures and a harsh chemical environment in the exhaust gas of diesel vehicles. This paper will present further durability evaluation results of the new Si bonded SiC particulate filters which have been collected in engine bench tests and vehicle durability runs. The Si-SiC filters passed both 100 and 200 regeneration cycles under severe ageing conditions and without any problems. The used filters were subjected to a variety of analytical tests. The back pressure and ash distribution were determined. The filter material was also analysed.
Technical Paper

Study on Reliability of Wall-Flow Type Diesel Particulate Filter

2004-03-08
2004-01-0959
In this paper a method of DPF(Diesel Particulate Filter) lifetime estimation against the thermal stress is presented. In the method, experimentally measured material fatigue property and DPF temperature distributions under various conditions including regeneration mode were used to perform FEM stress analyses and the estimation of DPF lifetime and allowable stresses. From the viewpoint of the system design, to prevent DPF damages such as cracks created through thermal stress or melting, controlling the amount of PM accumulation is important. In this study, the pressure difference behavior under each of PM accumulation mode and regeneration mode was investigated experimentally. The experimental results showed different pressure drop behaviors in accumulation and regeneration. DPFs were observed in detail after PM accumulation and during regeneration to discuss mechanisms of the pressure difference behavior.
Technical Paper

Prediction of Catalytic Performance during Light-off Phase with Different Wall Thickness, Cell Density and Cell Shape

2001-03-05
2001-01-0930
Further stringent emission legislation requires advanced technologies, such as sophisticated engine management and advanced catalyst and substrate to achieve high catalytic performance, especially during the light-off phase. This paper presents the results of calculations and measurements of hydrocarbon and carbon monoxide light-off performance for substrates of different wall thickness, cell density and cell shapes. The experimental data from catalyst light-off testing on an engine dynamometer are compared with theoretical results of computer modeling under different temperature ramps and flow rates. The reaction kinetics in the computer modeling are derived from the best fit for the performance of conventional ceramic substrate (6mil/400cpsi), by comparing the theoretical and experimental results on both HC and CO emissions. The calibrated computer model predicts the effects of different wall thickness, cell density and cell shape.
Technical Paper

Application of Advanced Three-Way Catalyst Technologies on High Cell Density Ultra Thin-Wall Ceramic Substrates for Future Emission Legislations

2001-03-05
2001-01-0924
The future emission limits for gasoline fuelled passenger cars require more and more efficient exhaust gas aftertreatment devices - the catalytic converter being one essential part of the complex system design. The present paper summarizes the results of several basic research programs putting major emphasis on the application of highly sophisticated three-way catalyst technologies being taylored for the utilization on ultra thin-wall ceramic substrates. In the first part of the investigation the following effects were examined in detail: Different washcoat loadings at constant PGM-loadings Different volumes of catalysts for constant amounts of PGM and washcoat Similar washcoat technologies at different ratios of WC-loading to precious metal concentration in the washcoat.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

Influence of Cell Shape Between Square and Hexagonal Cells

2003-03-03
2003-01-0661
Developing ultra thin wall ceramic substrates is necessary to meet stricter emissions regulations, in part because substrate cell walls need to be thinner in order to improve warm-up and light-off characteristics and lower exhaust system backpressure. However, the thinner the cell wall becomes, the poorer the mechanical and thermal characteristics of the substrate. Furthermore, the conditions under which the ultra thin wall substrates are used are becoming more severe. Therefore both the mechanical and thermal characteristics are becoming important parameters in the design of advanced converter systems. Whereas square cells are used world-wide in conjunction with oxidation and/or three-way catalysts, hexagonal cells, with features promoting a homogeneous catalyst coating layer, have found limited use as a NOx absorber due to its enhanced sulfur desorption capability.
Technical Paper

Effect of Cell Shape on Mass Transfer and Pressure Loss

2003-03-03
2003-01-0659
To meet stringent emissions regulations, high conversion efficiency is required. This calls for advanced catalyst substrates with thinner walls and higher cell density. Higher cell density is needed because it brings higher mass transfer from the gas to the substrate wall. Basically, the increase in total surface area (TSA) causes higher mass transfer. However, not only the TSA, but the cell shape also has a great effect on mass transfer. There are two main kinds of substrates. One is the extruded ceramic substrate and the other is the metal foil type substrate. These have different cell shapes due to different manufacturing processes. For the extruded ceramic substrate, it is possible to fabricate various cell shapes such as triangle, hexagon, etc. as well as the square shape. The difference in the cell shape changes not only the mass transfer rate, but also causes pressure loss change. This is an important item to be considered in the substrate design.
Technical Paper

Particle Number Emission Reduction for GDI Engines with Gasoline Particulate Filters

2017-10-08
2017-01-2378
In order to meet the challenging CO2 targets beyond 2020 despite keeping high performance engines, Gasoline Direct Injection (GDI) technology usually combined with charged aspiration is expanding in the automotive industry. While providing more efficient powertrains to reduce fuel consumption one side effect of GDI is the increased particle formation during the combustion process. For the first time for GDI from September 2014 there is a Particle Number (PN) limit in EU of 6x10 sup 12 #/km, which will be further reduced by one order of magnitude to 6x10 sup 11 #/km effective from September 2017 to be the same level as applied to Diesel engines. In addition to the PN limit of the certification cycle NEDC further certification of Real Driving Emissions (RDE) including portable PN measurements are under discussion by the European Commission. RDE test procedure requires stable and low emissions in a wide range of engine operations and durable over a distance of 160 000 km.
Technical Paper

Influence of Material Properties and Pore Design Parameters on Non-Catalyzed Diesel Particulate Filter Performance with Ash Accumulation

2012-09-10
2012-01-1728
Diesel particulate filters (DPF) are a common component in emission-control systems of modern clean diesel vehicles. Several DPF materials have been used in various applications. Silicone Carbide (SiC) is common for passenger vehicles because of its thermal robustness derived from its high specific gravity and heat conductivity. However, a segmented structure is required to relieve thermal stress due to SiC's higher coefficient of thermal expansion (CTE). Cordierite (Cd) is a popular material for heavy-duty vehicles. Cordierite which has less mass per given volume, exhibits superior light-off performance, and is also adequate for use in larger monolith structures, due to its lower CTE. SiC and cordierite are recognized as the most prevalent DPF materials since the 2000's. The DPF traps not only combustible particles (soot) but also incombustible ash. Ash accumulates in the DPF and remains in the filter until being physically removed.
Technical Paper

High Porosity DPF Design for Integrated SCR Functions

2012-04-16
2012-01-0843
Diesel engines are more fuel efficient due to their high thermal efficiency, compared to gasoline engines and therefore, have a higher potential to reduce CO2 emissions. Since diesel engines emit higher amounts of Particulate Matter (PM), DPF systems have been introduced. Today, DPF systems have become a standard technology. Nevertheless, with more stringent NOx emission limits and CO2 targets, additional NOx emission control is needed. For high NOx conversion efficiency, SCR catalysts technology shows high potential. Due to higher temperature at the close coupled position and space restrictions, an integrated SCR concept on the DPFs is preferred. A high SCR catalyst loading will be required to have high conversion efficiency over a wide range of engine operations which causes high pressure for conventional DPF materials.
Technical Paper

Newly Developed Cordierite Honeycomb Substrate for SCR Coating Realizing System Compactness and Low Backpressure

2012-04-16
2012-01-1079
Ammonia Selective Catalytic Reduction (SCR) and Lean NOx Trap (LNT) systems are key technologies to reduce NOx emission for diesel on-highway vehicles to meet worldwide tighter emission regulations. In addition DeNOx catalysts have already been applied to several commercial off-road applications. Adding the DeNOx catalyst to existing Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF) emission control system requires additional space and will result in an increase of emission system back pressure. Therefore it is necessary to address optimizing the DeNOx catalyst in regards to back pressure and downsizing. Recently, extruded zeolite for DeNOx application has been considered. This technology improves NOx conversion at low temperature due to the high catalyst amount. However, this technology has concerned about strength and robustness, because the honeycomb body is composed of catalyst.
Technical Paper

Warm-Up Characteristics of Thin Wall Honeycomb Catalysts

1991-02-01
910611
HC emission standards will be tightened during the 1990's in the US. A key issue in reducing HC emission is improving the warm-up characteristics of catalysts during the cold start of engines. For this purpose, studies are under way on reduction of heat mass of ceramic substrates. Reduction of cell walls in substrates to thickness smaller than the current thickness of 12mil or 6mil has resulted in reduced heat mass, and also reduced flow restriction of substrates. The warm-up characteristics of low bulk density catalysts are better than those of high bulk density, i.e., the warm-up characteristics of thinner wall or lower cell density catalysts are better than those of thicker wall or higher cell density catalysts. A relationship between geometric surface area and warm-up characteristics is observed.
Technical Paper

Development of Improved SCRonDPF Design for Future Tighter Regulations and Reduced System Packaging

2018-04-03
2018-01-0344
With the push towards more stringent on-road US heavy duty diesel regulations (i.e. HD GHG Phase 2 and the proposed ARB 20 mg/bhp-hr NOx), emission system packaging has grown critical while improving fuel economy and NOx emissions. The ARB regulations are expected to be implemented post 2023 while regulation for EU off-road segment will begin from 2019. The regulation, called Stage V, will introduce particle number (PN) regulation requiring EU OEMs to introduce a diesel particulate filter (DPF) while customer demands will require the OEMs to maintain current emission system packaging. A viable market solution to meet these requirements, especially for EU Stage V being implemented first, is a DPF coated with a selective catalyst reduction (SCR) washcoat (i.e. SCRonDPF).
Technical Paper

A Structurally Durable EHC for the Exhaust Manifold

1994-03-01
940466
It is well known that an EHC (Electrically Heated Catalyst) is very effective in reducing cold start HC emissions. However, the large electric power consumption of the EHC is a major technical issue. When installed in the exhaust manifold, the EHC can take advantage of exhaust heat to warm up faster, resulting in a reduced electric power demand. Therefore, a structurally durable EHC which can withstand the severe manifold conditions is desirable. Through the use of a extruded monolithic metal substrate, with a flexible hexagonal cell structure and a special canning method, we have succeeded in developing a structurally durable EHC. This new EHC installed in the exhaust manifold with a light-off catalyst directly behind it demonstrated a drastic reduction in FTP (Federal Test Procedure) Total HC emissions.
X