Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Strategies to Mitigate Ammonia Release on the International Space Station

2007-07-09
2007-01-3186
The management of off-nominal situations on-board the International Space Station (ISS) is crucial to its continuous operation. Off-nominal situations can arise from virtually any aspect of ISS operations. One situation of particular concern is the inadvertent release of a chemical into the ISS atmosphere. In sufficient quantities, a chemical release can render the ISS uninhabitable regardless of the chemical's toxicity as a result of its effect on the hardware used to maintain the environment. This is certainly true with system chemicals which are integral components to the function and purpose of the system. Safeguards, such as design for minimum risk, multiple containment, hazard assessments, rigorous safety reviews, and others, are in place to minimize the probability of a chemical release to the ISS environment thereby allowing the benefits of system chemicals to outweigh the risks associated with them. The thermal control system is an example of such a system.
Technical Paper

International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) Desiccant/Adsorbent Bed (DAB) Orbital Replacement Unit (ORU) Redesign

2007-07-09
2007-01-3181
The Carbon Dioxide Removal Assembly (CDRA) is a part of the International Space Station (ISS) Environmental Control and Life Support (ECLS) system. The CDRA provides carbon dioxide (CO2) removal from the ISS on-orbit modules. Currently, the CDRA is the secondary removal system on the ISS, with the primary system being the Russian Vozdukh. Within the CDRA are two Desiccant/Adsorbent Beds (DAB), which perform the carbon dioxide removal function. The DAB adsorbent containment approach required improvements with respect to adsorbent containment. These improvements were implemented through a redesign program and have been implemented on units on the ground and returning from orbit. This paper presents a DAB design modification implementation description, a hardware performance comparison between the unmodified and modified DAB configurations, and a description of the modified DAB hardware implementation into the on-orbit CDRA.
Technical Paper

Selection of an Alternate Biocide for the International Space Station Internal Active Thermal Control System Coolant Loops

2003-07-07
2003-01-2568
The International Space Station (ISS) IATCS (Internal Active Thermal Control System) includes two internal coolant loops that use an aqueous based coolant for heat transfer. A silver salt biocide was used initially as an additive in the coolant formulation to control the growth and proliferation of microorganisms in the coolant loops. Ground-based and in-flight testing has demonstrated that the silver salt is rapidly depleted and not effective as a long-term biocide. Efforts are now underway to select an alternate biocide for the IATCS coolant loop with greatly improved performance. An extensive evaluation of biocides was conducted to select several candidates for test trials.
Technical Paper

An Environmental Impact Assessment of Perfluorocarbon Thermal Working Fluid Use on Board Crewed Spacecraft

2006-07-17
2006-01-2218
The design and operation of crewed spacecraft requires identifying and evaluating chemical compounds that may present reactivity and compatibility risks with the environmental control and life support (ECLS) system. Such risks must be understood so that appropriate design and operational controls, including specifying containment levels, can be instituted or an appropriate substitute material selected. Operational experience acquired during the International Space Station (ISS) program has found that understanding ECLS system and environmental impact presented by thermal control system working fluids is imperative to safely operating any crewed space exploration vehicle. Perfluorocarbon fluids are used as working fluids in thermal control fluid loops on board the ISS. Also, payload hardware developers have identified perfluorocarbon fluids as preferred thermal control working fluids.
Technical Paper

Replacement for Internal Active Thermal Control System Fluid Sample Bag Material

2005-07-11
2005-01-3078
The International Space Station (ISS) Internal Active Thermal Control System (IATCS) uses a water based heat transport fluid with specific chemical parameters and additives for corrosion and microbial control. The fluid and hardware have experienced anomalies since activation of the United States Laboratory (USL), including chemical and possibly, microbial corrosion. The required sampling of the fluid has the crewmembers removing samples via an in-line sampling tool to perform real-time trace ammonia contamination tests using color change strips, and filling a 150 ml bag from each loop for the ground laboratory analyses. The former activity requires stable storage of the strips, and for the latter activity, it is highly desirable to return the ground sample as stable as possible. This paper describes the process for materials selection, test methods/set-up, results, and final recommendation for a replacement outer bag.
Technical Paper

Human Factors Technology for America's Space Program

1982-02-01
821493
NASA is initiating a space human factors research and technology development program in October 1982. The impetus for this program stems from: the frequent and economical access to space provided by the Shuttle, the advances in control and display hardware/software made possible through the recent explosion in microelectronics technology, heightened interest in a space station, heightened interest by the military in space operations, and the fact that the technology for long duration stay times for man in space has received relatively little attention since the Apollo and Skylab missions. The rationale for and issues in the five thrusts of the new program are described. The main thrusts are: basic methodology, crew station design, ground control/operations, teleoperations and extra vehicular activity.
Technical Paper

Summary of NASA Aerodynamic and Heat Transfer Studies in Turbine Vanes and Blades

1976-02-01
760917
Aerodynamic effects of trailing edge geometry, hole size, angle, spacing, and shape have been studied in two- and three-dimensional cascades and in a warm turbine test series. Heat transfer studies have been carried out in various two- and three-dimensional test facilities in order to provide corresponding heat transfer data. Results are shown in terms of cooling effectiveness and aerodynamic efficiency for various coolant fractions, coolant-primary temperature ratios, and cooling configurations.
Technical Paper

Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

2000-07-10
2000-01-2239
For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow packed column operated in two ground-based low gravity facilities (two-second drop tower and KC-135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity.
X