Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Experimental Investigation on the Emission Characteristics of HCCI Engine Operation Using N-Heptane

2007-07-23
2007-01-1854
This paper presents the emission characteristics of a HCCI engine operation using n-heptane. The experiments were conducted in a single cylinder Co-operative Fuel Research (CFR) engine equipped with an air-assist port fuel injector. The effects of intake temperature, air/fuel ratio, compression ratio, turbo-charging, and EGR rate on exhaust emissions were explored. The analysis of the exhaust gases included oxides of nitrogen (NOx), nitrous oxide (N2O), carbon monoxide (CO), total hydrocarbon (THC), and soot. The hydrocarbon species present in exhaust gases and their concentrations at several operating conditions were also characterized. The strategies to obtain low HC, CO and NOx emissions are presented and discussed. The approaches to effectively retard HCCI combustion phase without deteriorating combustion efficiency are examined. It was found that HCCI combustion produces extremely low soot and NOx emissions.
Technical Paper

Influence of Fuel Aromatics Type on the Particulate Matter and NOx Emissions of a Heavy-Duty Diesel Engine

2000-06-19
2000-01-1856
The influence of fuel aromatics type on the particulate matter (PM) and NOx exhaust emissions of a heavy-duty, single-cylinder, DI diesel engine was investigated. Eight fuels were blended from conventional and oil sands crude oil sources to form five fuel pairs with similar densities but with different poly-aromatic (1.6 to 14.6%) or total aromatic (14.3 to 39.0%) levels. The engine was tuned to meet the U.S. EPA 1994 emission standards. An eight-mode, steady-state simulation of the U.S. EPA heavy-duty transient test procedure was followed. The experimental results show that there were no statistically significant differences in the PM and NOx emissions of the five fuel pairs after removing the fuel sulphur content effect on PM emissions. However, there was a definite trend towards higher NOx emissions as the fuel density, poly-aromatic and total aromatic levels of the test fuels increased.
X