Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development of Ice Crystal Facilities for Engine Testing

2007-09-24
2007-01-3290
The Gas Turbine Laboratory of the National Research Council of Canada (NRC) has been involved in icing certification testing of gas turbine engines for over 60 years. It has become evident from flight incident reports in recent years, that ice crystals can have serious effects on the performance of the core of a gas turbine. This has led to the proposal of a new certification requirement for turbofan engines. This paper describes the test facilities and procedures, as well as the analysis and verification methods, which have been used recently to develop a new ice crystal generating system. The paper describes the ice crystal production and delivery systems, as well as the design and development version for business jet sized engines. In addition, a description of some component testing using ice crystals on a heated flat plate is included to demonstrate that the facility can replicate rapid ice crystal build-up on surfaces which are significantly above the melting point.
Technical Paper

Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations

1992-02-01
920463
An experimental test of a non-contact method for determining simultaneously the pressure in each cylinder of a reciprocating engine is reported. The method exploits a pattern recognition technique to compare crankshaft speed fluctuations to reference patterns in a knowledge base. The crankshaft speed is measured by timing the passage of gear teeth on the engine's flywheel. The experiment was carried out on a Detroit Diesel Corporation 6V-92TA engine. The baseline operating condition was 75 percent rated load at 1200 rpm. The engine's six cylinders were individually under-fuelled from the baseline operating condition to achieve peak pressure reductions of 5 to 20 percent. The required reference angular velocity waveforms were obtained by measuring the effect of under-fuelling individual cylinders to reduce their peak pressures by 10 percent. The experimental results show that the method evaluates the cylinder pressures with an RMS error of less than 6 percent.
Technical Paper

Effect of Low Cetane Fuels on Diesel Engine Operation: 1 - Preliminary Runs on Detroit Diesel 3-71 Engine

1982-02-01
821233
Three fuels with cetane numbers of 45, 36 and 29 have been run at four load levels at each of three speeds in a Detroit: Diesel 3–71 engine with standard injectors. Measurements of temperatures, pressures, Load, fuel flow, cylinder pressure in one cylinder, strain gauge measurements from the rocker arm operating one injector and exhaust emissions were all recorded. Comparisons show little change in operation except for increases in ignition delay and rate of cylinder pressure rise with the low cetane fuels. It was concluded, on the basis of these short runs, that the intermediate fuel probably would not cause major difficulties but the lowest cetane fuel could possibly present problems with noise and engine durability.
Technical Paper

Cetane Number Estimation of Diesel Fuels from Carbon Type Structural Composition

1984-10-01
841341
The present day measure of the ignition quality of a diesel fuel is the cetane number. Cetane number determination is carried out using a special single cylinder engine with reproducible operating conditions and variable compression ratio. The importance of the carbon skeletal structure of the fuel on the ignition quality is qualitatively well known, but the practice of defining the ignition quality of diesel fuels by a term, whose physical and/or chemical meaning is not well understood, has not been abandoned yet. The correlations that have been proposed recently, which relate the total fuel aromaticity or mid-boiling point, hydrogen content and density to the cetane number, suffer from the lack of representation of the fuel's compositional structure, and of well defined relationship, if any, between boiling point, hydrogen content, density and ignition quality.
Technical Paper

Performance/Combustion Characteristics of Six Canadian Alternative Fuels Tested in a Bombardier Medium Speed Diesel

1985-06-01
851224
Six experimental fuels representative of Canadian future fuel options were tested against a reference fuel in a Bombardier 12 cylinder, 4 stroke, 3000 hp, medium speed diesel. The reference fuel was a straight run ASTM #2-D. The first test fuel blend consisted of heavy atmospheric gas oil that extended the distillation range (higher end point) of the other blend component ASTM #2-D. The second fuel was a blend of a distillate cut from a mixture of conventional and tar sands crude with hydrogen treated cracked stock. This provided a fuel with substantial levels of aromatic and cracked components. The third fuel was gas oil side stream: a low cetane number, high aromatics level tar sands distillate. The fourth fuel was an equal portion blend of tar sands crude components, gas oil side-stream and heavy unifined gas oil. The fifth fuel was a blend of ASTM #2-D heating oil and a substantial portion of stabilized cracked stock.
Technical Paper

Effect of Low Cetane Fuels on Diesel Engine Performance 2-Combustion Performance of a Detroit Diesel 3-71 Engine

1985-02-01
850052
Four experimental diesel fuels with cetane numbers (CN) of 40, 37, 35 and 27 have been tested in a Detroit Diesel Allison 3-71 engine using the standard N65 injectors. The 35 CN fuel was a blend of distillates from conventional and tar sands crude with hydrogen treated cat-cracked stock. This provided a fuel typical of the 1990's and beyond, with substantial levels of aromatic and cracked components. The 27 CN fuel was a blend of the same components as the 35 CN fuel only with a larger portion of the hydrogen treated cat-cracked component. The 40 CN fuel was identical to the 35 CN fuel with a .2% DII-3 Diesel Ignition Improver. The 37 CN fuel was a blend of Canadian winter diesel fuel oil and 24% Light Cycle Oil (LCO), The four experimental fuels and one reference fuel were tested at four load levels at each of three engine speeds. The performance and combustion characteristics were compared with the physical and chemical fuel properties.
Technical Paper

High Speed Diesel Performance/Combustion Characteristics Correlated with Structural Composition of Tar Sands Derived Experimental Fuels

1985-02-01
850240
Two Canadian tar sands derived experimental diesel fuels with cetane numbers of 26 and 36 and a reference fuel with a cetane number of 47 were tested in a Deutz (F1L511D), single cylinder, A stroke, naturally aspirated research engine. The fuels were tested at intake and cooling air temperatures of 30 and 0°C. The 36 cetane number fuel was tested with advanced, rated and retarded injection timings. Poor engine speed stability at light loads and excessive rates of combustion pressure rise were experienced with the lowest cetane number fuel. Detailed performance/combustion behavior is presented and a correlation with fuel structural composition is made. The analytical techniques used to characterize the fuels included liquid chromatography, gas chromatography mass spectrometry (GC-MS) and proton nuclear magnetic resonance spectrometry (PNMR).
Technical Paper

The GLACIER Icing Facility-Lessons Learnt in Five Years of Operation

2015-06-15
2015-01-2144
The Global Aerospace Centre for Icing and Environmental Research Inc. (GLACIER) facility is located in Thompson, Manitoba, Canada. This facility provides icing certification tests for large gas turbine engines, as well as performance, endurance and other gas turbine engine qualification testing. This globally unique outdoor engine test and certification facility was officially opened back in 2010. The prime purpose of this facility is for icing certification of aero gas turbines. As a generic engine test facility, it includes the infrastructure and test systems necessary for the installation of both current and future gas turbine engines. The GLACIER facility completed its commissioning in the winter of 2010/2011, and has now experienced five years of full icing seasons. Rolls-Royce and Pratt and Whitney have both successfully performed certification and engineering icing testing with 5 engines completing their icing certification.
X