Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

An Experimental Study on the Impact of Biodiesel Origin and Type on the Exhaust Emissions from a Euro 4 Pick-up Truck

2010-10-25
2010-01-2273
This study investigates the impact of mid-high biodiesel blends on the criteria and PAH emissions from a modern pick-up diesel vehicle. The vehicle was a Euro 4 (category N1, subclass III) compliant common-rail light-duty goods pick-up truck fitted with a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer equipped with CVS, following the European regulations. All measurements were conducted over the certification New European Driving Cycle (NEDC) and the real traffic-based Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based biodiesel, a palm-based biodiesel, and an oxidized biodiesel obtained from used frying oils were blended with a typical automotive ultra-low-sulfur diesel at proportions of 30, 50 and 80% by volume. The experimental results revealed that CO₂ emissions and fuel consumption exhibited an increase with biodiesel over all driving conditions.
Journal Article

Regulated and Unregulated Emissions of a Euro 4 SUV Operated with Diesel and Soy-based Biodiesel Blends

2009-11-02
2009-01-2690
In this study, regulated, unregulated exhaust emissions and fuel consumption with ultra low sulphur diesel and soy-based biodiesel blends at proportions of 10 and 30% v/v have been investigated. A Euro 4 compliant SUV, equipped with a 2.2 litre common-rail diesel engine and an oxidation catalyst was tested on a chassis dynamometer with constant volume sampling (CVS) technique. Emission and fuel consumption measurements were performed over the New European Driving Cycle (NEDC) and the non-legislated Artemis driving cycles which simulate urban, rural, and highway driving conditions in Europe. The regulated pollutants were characterized by determined NOx, PM, CO, and HC. CO2 was also quantified in the exhaust. Overall, 16 PAHs, 4 nitro-PAHs, 6 oxy-PAHs, 13 carbonyl compounds and particulate alkanes ranged from C13 to C35 were determined in the exhaust.
Journal Article

Effect of Fuel Chemical Structure and Properties on Diesel Engine Performance and Pollutant Emissions: Review of the Results of Four European Research Programs

2008-04-14
2008-01-0838
During recent years, the deterioration of greenhouse phenomenon, in conjunction with the continuous increase of worldwide fleet of vehicles and crude oil prices, raised heightened concerns over both the improvement of vehicle mileage and the reduction of pollutant emissions. Diesel engines have the highest fuel economy and thus, highest CO2 reduction potential among all other thermal propulsion engines due to their superior thermal efficiency. However, particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines are comparatively higher than those emitted from modern gasoline engines. Therefore, reduction of diesel emitted pollutants and especially, PM and NOx without increase of specific fuel consumption or let alone improvement of diesel fuel economy is a difficult problem, which requires immediate and drastic actions to be taken.
Technical Paper

Antiknock Performance of Gasoline Substitutes and their Effects on Gasoline Properties

1998-05-04
981367
This paper describes some of the recent work carried out in our laboratory regarding the effects of novel oxygen and nitrogen containing compounds on the antiknock quality of unleaded gasoline and their effects on some other gasoline properties. In particular, the research included Research Octane Number (RON) measurements and the evaluation of the effects of the most effective antiknock compounds on Dry Vapour Pressure Equivalent (DVPE), distillation temperatures, aromatic content, olefins, and oxygen content. Emphasis was given in studying chemical structures that can be derived from renewable raw materials. The compounds tested included substituted phenols, furan derivatives, aliphatic amines, various amide structures and Mannich base phenols. Methyl t-butyl ether (MTBE), the most widespread oxygenate currently used in gasoline, was used as a yardstick for assessing the quality of the compounds tested.
Technical Paper

Evaluation of a New Diagnostic Technique to Detect and Account for Load Variation during Cylinder Pressure Measurement of Large-Scale Four-Stroke Diesel Engines

2012-04-16
2012-01-1342
High efficiency, power concentration and reliability are the main requirements from Diesel Engines that are used in most technical applications. This becomes more important with the increase of engine size. For this reason the aforementioned characteristics are of significant priority for both marine and power generation applications. To guarantee efficient engine operation and maximum power output, both research and commercial communities are increasingly interested in methods used for supervision, fault-detection and fault diagnosis of large scale Diesel Engines. Most of these methods make use of the measured cylinder pressure to estimate various critical operating parameters such as, brake power, fuel consumption, compression status, etc. The results obtained from the application of any diagnostic technique, used to assess the current engine operating condition and identify the real cause of the malfunction or fault, depend strongly on the quality of these data.
Technical Paper

Single Fuel Research Program Comparative Results of the Use of JP-8 Aviation Fuel versus Diesel Fuel on a Direct Injection and Indirect Injection Diesel Engine

2006-04-03
2006-01-1673
During the last years a great effort has been made by many NATO nations to move towards the use of one military fuel for all the land-based military aircraft, vehicles and equipment employed on the military arena. This idea is known to as the Single Fuel Concept (SFC). The fuel selected for the idea of SFC is the JP-8 (F-34) military aviation fuel which is based upon the civil jet fuel F-35 (Jet A-1) with the inclusion of military additives possessing anti-icing and lubricating properties. An extended experimental investigation has been conducted in the laboratory of Thermodynamic and Propulsion Systems at the Hellenic Air Force Academy. This investigation was conducted with the collaboration of the respective laboratories of National Technical University of Athens and Hellenic Naval Academy as well.
Technical Paper

Use of JP-8 Aviation Fuel and Biodiesel on a Diesel Engine

2004-10-25
2004-01-3033
The present paper aims to discuss the quality characteristics of Jet Fuels used in the Greek market in comparison with fuels used in other countries and to evaluate jet fuels along with diesel and biodiesel on a diesel engine. To establish the quality characteristics for Jet Fuels of the Greek market, fuel samples were collected from the local refineries on a regular basis, thus monitoring the fuel quality fluctuation over time. JP8, along with diesel and biodiesel, were used alone and in mixtures on a single cylinder stationary diesel engine. Emissions and volumetric fuel consumption were measured under various loads.
Technical Paper

Available Strategies for Improving the Efficiency of DI Diesel Engines-A Theoretical Investigation

2000-03-06
2000-01-1176
The Diesel engine and especially the direct injection type one is considered to be one of the most efficient thermal engines known to man up to now. It has an efficiency that in some cases is 30 to 40% higher than its competitor the spark ignition engine. The efficiency of the direct injection diesel engine has been considerably improved during the last decade resulting to low fuel consumption and lower absolute values of pollutant emissions. If we consider the green house effect caused by the emitted CO2 it is revealed the environmental importance of high engine efficiency. In the present work a theoretical investigation is conducted using a detailed simulation model for engine performance prediction, to examine the possibilities for improving engine efficiency. The simulation model used is a complete open cycle model for the engine and its subsystems. Such phenomenological models are very suitable for the prediction of engine performance.
Technical Paper

Development of New 3-D Multi-Zone Combustion Model for Indirect Injection Diesel Engines with a Swirl Type Prechamber

2000-03-06
2000-01-0587
During the past years most fundamental research worldwide has been concentrated on the direct injection diesel engine (DI). This engine has a lower specific fuel consumption when compared to the indirect injection diesel engine (IDI) used up to now in most passenger cars. But the application of the direct injection engine on passenger cars and light trucks has various problems. These are associated mainly with its ability to operate at high engine speeds due to the very low time available for combustion. To overcome these problems engineers have introduced various techniques such as swirl and squish for the working fluid and the use of extremely high pressure fuel injection systems to promote the air-fuel mixing mechanism. The last requires the solution of various problems associated with the use of the high pressure and relatively small injector holes.
Technical Paper

Study of Stoichiometric and Lean Combustion in a Spark Ignition, Direct Injection Optical Engine Using E10 and ETBE20 Fuels

2022-08-30
2022-01-1003
Biofuels are a promising alternative to fossil fuels as their availability has been reduced during the last decades and they are the main sources of greenhouse gases emissions. Moreover, the targets of the international regulations include reduction of fossil fuels consumption, and improvement of the sustainability of the vehicle fleet. Blending gasoline with biofuels will result in changes in fuel blending procedures and combustion process especially for the gasoline direct injection (GDI) engines. In this article, flame visualization using chemiluminescence techniques in a Single Cylinder Optical Research Engine (SCORE) is presented, with an adjusted intake pressure of 850 mbar and early intake single injection (280 CAD BTDC), by using 100% hydrocarbon-based gasoline, E10 (90% gasoline - 10% ethanol) and ETBE20 (80% gasoline - 20% ethyl tert-butyl ether). ETBE20 is a potential alternative for E10, as it contains the same amount of renewable fuel and has low water solubility.
X