Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of Long-Life Oil for Gas Engines

2006-11-13
2006-32-0013
We closely studied the action mechanism and deterioration mechanism of ZDTP (zinc dialkyldithiophosphate), used as an essential additive in engine oils for over half a century, and determined that the sulfur in ZDTP was hampering efforts to improve oil life. With this in mind, we developed a completely new engine oil blended with ZP (zinc dialkylphosphate), in which oxygen replaces the sulfur in ZDTP, and conducted engine tests. The tests confirmed that the newly developed oil provides long service life that cannot be attained with conventional oil formulated with ZDTP.
Technical Paper

Wear Mechanisms of Steel Under Boundary Lubrication in Presence of Carbon Black and Graphite Nano-onions Particles

2008-10-06
2008-01-2461
Both carbon blacks and carbon nano-onions nanoparticles have a spheroidal shape and a nested structure. They can be used to simulate the presence of soots in used engine oils. When added to fully formulated fresh engines oils, these two kinds of particles behave very differently. Carbon black particles are highly abrasive causing a lot of wear of steel surfaces and friction increases. At the opposite, the addition of carbon onions in lubricant leads to a reduction of both friction and wear compared to pure base oil. This shows that there is an opportunity to control wear in engines by changing the structure of soots during the combustion process.
Technical Paper

Development of High Performance Four-Cycle Motorcycle Engine Oils

2008-09-09
2008-32-0080
The environmental performance of automobiles and automobile engines in particular is the foremost issue in the automotive industry today. In addition, engine durability performance is an essential aspect of engine oil performance. Four-cycle motorcycle engine oils formulated with dialkyl phosphate, a sulfur-free additive developed as an alternative to ZDDP, provide excellent environmental and durability performance in terms of longer drain intervals, cleanliness and low corrosion properties.
Technical Paper

Development of Low-Ash Type Heavy Duty Diesel Engine Oil for After-Treatment Devices

2004-06-08
2004-01-1955
In order to meet the increasingly tough emission regulations on diesel vehicles, automobile manufacturers in Japan are focusing on the development of diesel particulate filters (DPFs), nitrogen-oxide-reducing catalysts so-called deNOx catalysts, and other technology for reducing exhaust gases. In order to reduce catalyst poisoning, diesel fuel with a sulfur content of 50 ppm or lower-one-tenth the previous level-was put on the market in Japan in April 2003. At the same time, guidelines took effect for the new DH-2 and DL-1 standards for diesel engine oils compatible with after-treatment devices; the full regulations are scheduled to come into force in 2005. The newly developed low-ash diesel engine oil described here contains a reduced amount of metallic detergents, thus lowering the sulfated ash content to about two-thirds that of conventional high-ash oil.
Technical Paper

The Emission Performance of a GTL Diesel Fuel - a Japanese Market Study

2003-05-19
2003-01-1946
Comparative exhaust emission tests were performed on Japanese light- and heavy-duty vehicles fuelled with a Fischer-Tropsch diesel derived from natural gas and two crude oil-derived reference diesels. Both vehicles were tested without and with an oxidation catalyst fitted to the engine. In the case of the light-duty vehicle a current Japanese specification diesel and a future specification low sulphur diesel were used as reference while in the case of the heavy-duty vehicle only the low sulphur diesel was used as reference. The emission tests were performed using the standard Japanese emission test cycle applicable to that vehicle type. In addition certain selected modes from a special test cycle representative of congested traffic patterns encountered in the Tokyo inner city environment were used for both the light- and heavy-duty vehicles. In general, Fischer-Tropsch diesel reduced all the regulated emissions compared to both crude derived diesels.
Technical Paper

The Evaluation of the Fuel-Economy Performance of Low-Viscosity Drive-Train Lubricants and the Development of Oils with Improved Fatigue Life

2004-10-25
2004-01-3029
In recent years, progress has been made in reducing the viscosities of manual transmission fluids (MTFs) and automatic transmission fluids (ATFs). Lower viscosities of MTFs and ATFs are expected to improve the fuel economy of automobiles by reducing the viscous resistance. Examples of low-viscosity ATFs already commercially available include Toyota Auto Fluid WS and ZF Friedrichshafen AG's ZNF 13014. This paper first reports methods for measuring the torque transmission efficiency in manual and automatic transmissions. We explain a simple rig test that we developed using an IAE gear test machine, and we describe oil temperature increase tests and torque measurement tests using actual transmissions and fuel economy tests using actual vehicles. Next, we describe the effects of lower viscosities on the torque transfer efficiency as measured with these measurement methods.
X