Refine Your Search

Topic

Author

Search Results

Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Journal Article

Development of Hardware-In-the-Loop Simulation System for Steering Evaluation Using Multibody Kinematic Analysis

2014-04-01
2014-01-0086
The adoption of the electronic controlled steering systems with new technologies has been extended in recent years. They have interactions with other complex vehicle subsystems and it is a hard task for the vehicle developer to find the best solution from huge number of the combination of parameter settings with track tests. In order to improve the efficiency of the steering system development, the authors had developed a steering bench test method for steering system using a Hardware-In-the-Loop Simulation (HILS). In the steering HILS system, vehicle dynamics simulation and the tie rod axial force calculation are required at the same time in the real-time simulation environment. The accuracy of the tie rod axial force calculation is one of the key factors to reproduce the vehicle driving condition. But the calculation cannot be realized by a commercial software for the vehicle dynamics simulation.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Journal Article

Dissimilar Joining of Aluminum Alloy and Steel by Resistance Spot Welding

2009-04-20
2009-01-0034
This study concerns a dissimilar materials joining technique for aluminum (Al) alloys and steel for the purpose of reducing the vehicle body weight. The tough oxide layer on the Al alloy surface and the ability to control the Fe-Al intermetallic compound (IMC) thickness are issues that have so far complicated the joining of Al alloys and steel. Removing the oxide layer has required a high heat input, resulting in the formation of a thick Fe-Al IMC layer at the joint interface, making it impossible to obtain satisfactory joint strength. To avoid that problem, we propose a unique joining concept that removes the oxide layer at low temperature by using the eutectic reaction between Al in the Al alloy and zinc (Zn) in the coating on galvanized steel (GI) and galvannealed steel (GA). This makes it possible to form a thin, uniform Fe-Al IMC layer at the joint interface. Welded joints of dissimilar materials require anticorrosion performance against electrochemical corrosion.
Journal Article

Development of a Parallel Hybrid System for RWD Vehicles

2011-04-12
2011-01-0884
In December 2006, Nissan announced its Nissan Green Program 2010 (NGP 2010), a mid-term environmental action plan that includes initiatives to reduce vehicle emissions. In line with this plan, the company intends to introduce a new and original hybrid system in fiscal year 2010. Specifically, this system-called the “Infiniti Direct Response Hybrid”-is a one-motor, two-clutch parallel hybrid system that eliminates the need for a torque converter. It will be featured in the 2012 Infiniti M35 Hybrid and provides the following advantages. 1 Significant improvement in fuel economy even in Highway driving 2 Better response and a more direct feeling 3 Lightweight and low cost This one-motor, two-clutch system without torque converter possesses a simple but highly capable architecture that is new to the passenger vehicle segment.
Technical Paper

A Robotic Driver on Roller Dynamometer with Vehicle Performance Self Learning Algorithm

1991-02-01
910036
A robotic driver has been designed on the basis of an analysis of a human driver's action in following a given driving schedule. The self-learning algorithm enables the robot to learn the vehicle characteristics without human intervention. Based on learned relationships, the robotic driver can determine an appropriate accelerator position and execute other operations through sophisticated calculations using the future scheduled vehicle speed and vehicle characteristics data. Compensation is also provided to minimize vehicle speed error. The robotic driver can reproduce the same types of exhaust emission and fuel economy data obtained with human drivers with good repeatability. It doesn't require long preparation time. Thereby making it possible to reduce experimentation work in the vehicle development process while providing good accuracy and reliability.
Technical Paper

Aerodynamic Sensitivity Analysis of Tire Shape Factors

2020-04-14
2020-01-0669
It is well known that the wheels and tires account for approximately 25% of the overall aerodynamic drag of a vehicle. This is because the contribution of the tires to aerodynamic drag stems from not only aerodynamic drag itself directly caused by exposure to the main flow (tire CD), but also from aerodynamic drag indirectly caused by the interference between tire wakes and the upper body flow (body CD). In the literature, as far as the authors are aware, there have been no reports that have included the following all four aspects at once: (1) CD sensitivity to detailed tire shape factors; (2) CD sensitivity differences due to different vehicle body types; (3) CD sensitivity for each aerodynamic drag component, i.e., tire CD and body CD; (4) Flow structure and mechanism contributing to each aerodynamic drag component. The purpose of this study was to clarify CD sensitivity to tire shape factors for tire CD and body CD considering two different vehicle body types, sedan and SUV.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

Development of a Headway Distance Control System

1998-02-01
980616
This paper describes a headway distance control system for platoon driving on an automated highway system (AHS). The system implemented on a test vehicle is described first, followed by a description of a vehicle control method based on the use of throttle and brake actuators. This method makes it possible to obtain the target acceleration and deceleration regardless of the vehicle speed range and the rate of acceleration or deceleration. Experimental and simulation results obtained with this method are presented. A control method is then described that uses inter-vehicle communication and laser radar to maintain a constant headway between vehicles. The results of simulations and driving tests conducted with three vehicles are presented to illustrate that the use of inter-vehicle communication is highly effective in improving headway control performance.
Technical Paper

Information Services for Greater Driving Enjoyment

1998-02-23
980614
A prototype navigation system with cellular phone access to an information service center was constructed and evaluated. Center personnel can also operate the system remotely, in addition to providing traffic information and information for more enjoyable travel. Real-time conversation with a center operator is also possible. The system was rated positively by most of the subjects, especially the real-time voice service. This paper describes the car navigation market and cellular phone market in Japan, the system configuration, evaluation results and possible solutions to problems in the system. It also touches on the outlook for future car navigation systems and information services.
Technical Paper

A Loss Analysis Design Approach to Improving Torque Converter Performance

1998-02-23
981100
This paper describes the relationship between the design parameters used to define the geometry of an automotive torque converter and the resultant efficiency in relation to the internal flow characteristics. Taking the turbine bias angle and the contraction ratio of the pump flow passage as specific examples, the effects of each design parameter on the internal flow characteristics and the occurrence of loss were analyzed. A three-dimensional viscous flow analysis code was used in the numerical computation procedure and a method developed independently by the authors was used in the loss analysis. The flow near the wall was visualized experimentally using a technique resembling the so-called oil film method. The visualized results showed good qualitative agreement with the numerical analysis results.
Technical Paper

A New Approach to Developing a More Efficient Torque Converter Stator

1990-09-01
901765
A flatter design is becoming increasingly important for reducing torque converter axial size and weight. The conventional stator design method, in which the blade profile is geometrically determined and flow analysis of the profile may give some valuable information, is no longer sufficient for achieving efficient flow turning in the short axial length of flat torque converters. Here, after a brief review of the conventional design approach, an inverse design method is introduced, which yields a blade profile solution for a prescribed favorable velocity distribution along the blade. The performance improvement with this procedure has been demonstrated experimentally.
Technical Paper

Development of Lightweight Connecting Rod Based on Fatigue Resistance Analysis of Microalloyed Steel

1990-02-01
900454
Application of microalloyed steel to automobile parts is becoming increasingly common in Japan. However, fatigue properties of actual automotive forged parts with slight notches on their surface have not been fully clarified. In this work, the fatigue properties of microalloyed steel were studied using test specimens and also actual automotive parts. The results indicated that microalloyed steel with an optimal microstructure showed higher notch fatigue resistance than quenched-tempered steel. The improvement of material technology and the application of microalloyed steel have not only served to bring product costs down, but have paved the way for part weight reductions. Lightweight connecting rods for the newly developed Nissan engines have been produced, contributing to improved engine performance.
Technical Paper

A New Five-Speed Nissan Automatic Transmission for Passenger Cars

1990-02-01
900551
An electronically controlled five-speed automatic transmission has been developed for use in new 2-liter models. This high-performance gearbox is the world's first five-speed automatic transmission for passenger car use to be equipped with a torque converter. It is designed with an ultra-wide range and close ratio gearing and incorporates a host of outstanding technologies to provide excellent performance and driveability. This paper describes the major features and performance of this new automatic transmission and some of the studies undertaken concerning multiplication of gear steps.
Technical Paper

Development of Microalloyed Steel for Fracture Split Connecting Rod

2007-04-16
2007-01-1004
In Europe and the U.S., fracture split connecting rods are used in many types of current engines. This process can eliminate the machining of crankshaft end and eliminate the dowel pin for positioning. The most important key for fracture split connecting rods is a reduction in the plastic deformation during the fracture splitting process. For this reason, sinter-forged materials and pearlitic steels (C70S6) are used for fracture split connecting rods because of their low ductility. Such types of steel, however, are inferior to the hot forged microalloyed steels typically used as connecting rod material in Japan in terms of buckling strength and machinability although they are easier to fracture split. On the other hand, the conventional microalloyed steels used for connecting rods in Japan are not suitable for fracture splitting. The reason is that these steels have too much ductility and associated plastic deformation for fracture splitting.
Technical Paper

Road-load Input Contribution Analysis for Suspension Durability using a Multi-axial Road Simulator

2008-04-14
2008-01-1482
The durability test with road-load input is necessary for evaluating durability of body and chassis structure in automotive applications. This paper shows the method to analyze road-load input to a suspension system for development of a simple component level bench test. This method enables the extraction of the essential inputs to evaluate the durability of suspension parts using the transfer function (frequency response function) measured by Multi-axial Road Simulator and wheel force transducers. These extracted inputs contribute to development of a new realistic component bench test.
Technical Paper

Development of a Slip Speed Control System for a Lock-Up Clutch (Part II)

2008-04-14
2008-01-0001
A new control system for the coasting range was designed with the μ-synthesis technique to achieve robust stability, based on the slip speed control system that was reported in our previous paper.(1) The results of driving tests conducted with the fuel supply cut off while coasting confirm that the new control system is able to avoid engine stall even under sudden hard braking on a low friction road (μ<0.1) at a vehicle speed of 20 km/h and a turbine speed of 1000 rpm. The system also allows the lock-up clutch to slip stably at a certain target slip speed at anytime while coasting and achieves robust performance against characteristic variations of the lock-up mechanism. This slip speed control system thus makes it possible to extend the fuel cut-off range to a lower engine speed of 800 rpm, down from 950 rpm, thereby improving fuel economy by about 1%.
Technical Paper

Uniform Quenching Technology by Using Controlled High Pressure Gas after Low Pressure Carburizing

2008-04-14
2008-01-0365
To reduce quenching distortion, step gas quenching has been proposed in recent years, which refers to rapid gas cooling of steel from austenitizing temperature to a point above or below Ms temperature, where it is held for a specific period of time, followed by gas cooling. In this study, by using infrared thermography combined with conventional thermocouple, a new temperature monitoring and control system was developed to realize the step gas quenching process of a hypoid ring gear after low pressure carburizing. The test production results indicate that by using the new monitoring and control system, we can control the gas quenching process and the distortion of carburized gear treated by step gas quenching can be reduced significantly compared with standard gas quenching.
Technical Paper

Development of a Prediction Method for Passenger Vehicle Aerodynamic Lift using CFD

2008-04-14
2008-01-0801
Increasing expectations for stability at high speed call for the improvement of cars' aerodynamic performance, in particular lift reduction. However, due to styling constraints, traditional spoilers must be avoided and replaced by other solutions like underfloor components. Flow simulation is expected to be a useful tool for lift prediction, but the conventional models used so far did not represent complex geometry details such as the engine compartment and underfloor, and accuracy was insufficient. In the present study, a full vehicle simulation model, including the engine compartment and underfloor details, was used. Other improvements were also made such as optimization of the computational grid and the setting of boundary conditions for reproducing wind tunnel experiments or actual driving, making it possible to predict lift variations due to vehicle geometry changes.
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

2010-04-12
2010-01-0544
Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
X