Refine Your Search

Topic

Author

Search Results

Journal Article

Development of Hardware-In-the-Loop Simulation System for Steering Evaluation Using Multibody Kinematic Analysis

2014-04-01
2014-01-0086
The adoption of the electronic controlled steering systems with new technologies has been extended in recent years. They have interactions with other complex vehicle subsystems and it is a hard task for the vehicle developer to find the best solution from huge number of the combination of parameter settings with track tests. In order to improve the efficiency of the steering system development, the authors had developed a steering bench test method for steering system using a Hardware-In-the-Loop Simulation (HILS). In the steering HILS system, vehicle dynamics simulation and the tie rod axial force calculation are required at the same time in the real-time simulation environment. The accuracy of the tie rod axial force calculation is one of the key factors to reproduce the vehicle driving condition. But the calculation cannot be realized by a commercial software for the vehicle dynamics simulation.
Journal Article

Novel Microsurface Machining Techniques for Improving the Traction Coefficient

2008-04-14
2008-01-0414
This study examined methods of machining a microsurface texture on the surface of the rolling elements of a toroidal continuously variable transmission (CVT) for improving the traction coefficient. The microsurface texture of the toroidal surfaces consists of tiny circumferential grooves (referred to here as micro grooves) and a mirror-like surface finish similar to the rolling surface of bearings. Hard turning with a cubic boron nitride (cBN) cutting tool, grinding with a cBN wheel and micro forming were applied to machine the micro grooves. The results made clear the practical potential of each method. A micro forming device was also developed for use in actual production. A mirror-like surface finish and micro crowning of the convex portions of the microsurface texture were simultaneously executed by superfinishing them with a fine-grained elastic superfinishing stone.
Journal Article

Instantaneous Estimation of Road Friction based on Front Tire SAT using Kalman Filter

2013-04-08
2013-01-0680
This paper proposes a method of estimating road friction and tire slip angle in a cornering maneuver. The method can estimate front tire road friction accurately at low lateral acceleration because it is based on the tire self-aligning torque (SAT) that exhibits high sensitivity to road friction at low slip angles. Road friction and tire slip angle, which are mutually interdependent, are estimated simultaneously using an extended Kalman filter designed around a model describing the relationship between road friction and SAT and a vehicle lateral dynamic model. The front tire SAT is calculated with a mathematical model that describes the torque transmission characteristics from the electric power steering torque to SAT. Therefore, the proposed method is readily applicable to production vehicles. Results of an experimental study show that the change in road friction is instantaneously estimated at low lateral acceleration.
Journal Article

Improvement of Combustion Stability under Cold Ambient Condition by Mixture Control

2013-04-08
2013-01-1303
For diesel engine, lower compression ratio has been demanded to improve fuel consumption, exhaust emission and maximum power recently. However, low compression ratio engine might have combustion instability issues under cold temperature condition, especially just after engine started. As a first step of this study, cold temperature combustion was investigated by in-cylinder pressure analysis and it found out that higher heat release around top dead center, which was mainly contributed by pilot injection, was the key factor to improve engine speed fluctuation. For further understanding of combustion in cold condition, particularly mixture formation near a glow plug, 3D CFD simulation was applied. Specifically for this purpose, TI (Time-scale Interaction) combustion model has been developed for simulating combustion phenomena. This model was based on a reasonable combustion mode, taking into account the characteristic time scale of chemical reactions and turbulence eddy break-up.
Technical Paper

Development and Analysis of New Traction Control System with Rear Viscous LSD

1991-02-01
910700
Traction control systems (TCSs) serve to control brake pressure and engine torque, thereby reducing driving wheel spin for improved stability and handling. Systems are divided into two basic types by the brake control configuration. One type is a one-channel left-right common control system and the other is a two-channel individual control system. This paper presents an analysis of these two types of TCS configurations in terms of handling, acceleration, stability, yaw convergence and other performance parameters. The systems are compared with and without a limited-slip differential (LSD) under various road conditions, based on experimental data and computer simulations. As a result of this work, certain Nissan models are now equipped with a new Nissan Traction Control System with a rear viscous LSD (Nissan V-TCS), which provides both the advantages of a rear viscous LSD in a small slip region and a two-channel TCS in a large slip region.
Technical Paper

Feasibility Study of a New Optimization Technique for the Vehicle Body Structure in the Initial Phase of the Design Process

2007-05-15
2007-01-2344
This paper proposes a new hierarchical optimization technique for the vehicle body structure, by combining topology optimization and shape optimization based on the traction method. With the proposed approach, topology optimization is first performed on the overall allowable design domain in 3D. The surface is extracted from the optimization result and converted to a thin shell structure. Shape optimization based on the traction method is then applied to obtain an overall optimal body shape. In the shape optimization process, iterative calculations are performed in the course of consolidating parts by deleting those whose contribution is small. The result obtained by applying this method to the front frame structure of a vehicle is explained. The resultant optimal shape has stiffness greater than or equal to the original structure and is 35% lighter. This confirms the validity of the proposed technique. It was found, however, that some issues remain to be addressed.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Development of a Headway Distance Control System

1998-02-01
980616
This paper describes a headway distance control system for platoon driving on an automated highway system (AHS). The system implemented on a test vehicle is described first, followed by a description of a vehicle control method based on the use of throttle and brake actuators. This method makes it possible to obtain the target acceleration and deceleration regardless of the vehicle speed range and the rate of acceleration or deceleration. Experimental and simulation results obtained with this method are presented. A control method is then described that uses inter-vehicle communication and laser radar to maintain a constant headway between vehicles. The results of simulations and driving tests conducted with three vehicles are presented to illustrate that the use of inter-vehicle communication is highly effective in improving headway control performance.
Technical Paper

Development of the Full Active Suspension by Nissan

1990-09-01
901747
Nissan has developed a hydraulic active suspension which uses an oil pump as its power source to produce hydraulic pressure that negates external forces acting on the vehicle. As a result, the suspension system is able to control vehicle movement freely and continuously. This control capability makes it possible to provide higher levels of ride comfort and vehicle dynamics than are obtainable with conventional suspension systems. The major features of the hydraulic system include: (1) active bouncing control using a skyhook damper, (2) a frequency-sensitive damping mechanism and (3) active control over roll, dive and squat.
Technical Paper

Development of a Standalone Navigation and Audio-Visual System (Multi-AV System)

1990-02-01
900473
This paper describes the Multi-AV System featured in the 1989 model Nissan Cedric, Gloria, and CIMA. It is composed of a navigation system and an audio-visual system. The former system tracks the location of the vehicle and shows it on a CRT map display. This standalone navigation system has been achieved using a map-matching technique along with a terrestrial magnetic field sensor and wheel speed sensors installed at the wheels. Information on hotels, golf courses, Nissan dealers and other items can be obtained. A CD-ROM is employed as the memory. The audio-visual system consists of a radio, cassette deck, CD player, and TV. The Multi-AV System combines the practicality of a navigation function with the entertainment capabilities of an audio-visual system to satisfy diverse needs.
Technical Paper

Improvement of Lambda Control Based on an Exhaust Emission Simulation Model that Takes into Account Fuel Transportation in the Intake Manifold

1990-02-01
900612
This paper presents an improved exhaust emission simulation model that takes into account fuel transportation behavior in order to obtain more precise air-fuel ratio control, which is needed to meet stringent exhaust emission standards. This simulation model is based on experimental formulas for air and fuel behavior in the intake manifold, especially during transient engine operation. Fuel behavior, including the effect of wall flow on the air-fuel ratio, is obtained analytically. Predictions are then made of the exhaust emissions from a car operated under official driving schedules. The new simulation model is a useful tool in the design and development of fuel supply control systems. An outline of the new model is presented first along with a comparison of the calculated and experimental results. The air-fuel ratio control strategy derived with this model is then described.
Technical Paper

Development of Diesel Engine System with DPF for the European Market

2007-04-16
2007-01-1061
Nissan Motor has put on the European SUV market a 2.2-L direct-injection diesel engine with a diesel particulate filter (DPF) system that complies with the EURO IV emission regulations. This paper describes the DPF system, cooperative control of a variable geometry turbo (VGT) and exhaust gas recirculation (EGR), and a high-accuracy lambda control adopted for this engine. In order to achieve a compact DPF, the high-accuracy lambda control was developed to reduce variation in engine-out particulate matter (PM) emissions. Moreover, the accuracy of the technique for predicting the quantity of PM accumulation was improved for reliable detection of the DPF regeneration. Prediction error for PM accumulation increases during transient operation. Control logic was adopted to correct the PM prediction according to lambda fluctuation detected by an observer for lambda at cylinder under transient operating conditions. The observer is corrected lambda sensor output.
Technical Paper

HCCI Combustion on a Diesel VCR Engine

2008-04-14
2008-01-1187
A variable compression ratio (VCR) technology, that has a new piston-crankshaft mechanism with multi links, has been patented and developed by Nissan for some years (This technology has been detailed in previous SAE paper 2003-01-0921 and 2005-01-1134). This paper will present the use of this VCR technology for Diesel engine. The objective set with the use of VCR for Diesel engine is mainly to reduce as much as possible engine out emission to prepare for long-term, more strict emission standards. Results presented will include the description of the 2l Diesel VCR engine and its VCR mechanism adapted to Diesel constraints. Combustion tests have been performed with the use of HCCI (Homogeneous Charge Compression Ignition) combustion. This technology is still in a research phase in Renault: the adaptation of VCR technology to a Diesel engine consists in the modification of several parts with the addition of lower links, control links and control shaft.
Technical Paper

Road-load Input Contribution Analysis for Suspension Durability using a Multi-axial Road Simulator

2008-04-14
2008-01-1482
The durability test with road-load input is necessary for evaluating durability of body and chassis structure in automotive applications. This paper shows the method to analyze road-load input to a suspension system for development of a simple component level bench test. This method enables the extraction of the essential inputs to evaluate the durability of suspension parts using the transfer function (frequency response function) measured by Multi-axial Road Simulator and wheel force transducers. These extracted inputs contribute to development of a new realistic component bench test.
Technical Paper

Development of a Slip Speed Control System for a Lock-Up Clutch (Part II)

2008-04-14
2008-01-0001
A new control system for the coasting range was designed with the μ-synthesis technique to achieve robust stability, based on the slip speed control system that was reported in our previous paper.(1) The results of driving tests conducted with the fuel supply cut off while coasting confirm that the new control system is able to avoid engine stall even under sudden hard braking on a low friction road (μ<0.1) at a vehicle speed of 20 km/h and a turbine speed of 1000 rpm. The system also allows the lock-up clutch to slip stably at a certain target slip speed at anytime while coasting and achieves robust performance against characteristic variations of the lock-up mechanism. This slip speed control system thus makes it possible to extend the fuel cut-off range to a lower engine speed of 800 rpm, down from 950 rpm, thereby improving fuel economy by about 1%.
Technical Paper

Uniform Quenching Technology by Using Controlled High Pressure Gas after Low Pressure Carburizing

2008-04-14
2008-01-0365
To reduce quenching distortion, step gas quenching has been proposed in recent years, which refers to rapid gas cooling of steel from austenitizing temperature to a point above or below Ms temperature, where it is held for a specific period of time, followed by gas cooling. In this study, by using infrared thermography combined with conventional thermocouple, a new temperature monitoring and control system was developed to realize the step gas quenching process of a hypoid ring gear after low pressure carburizing. The test production results indicate that by using the new monitoring and control system, we can control the gas quenching process and the distortion of carburized gear treated by step gas quenching can be reduced significantly compared with standard gas quenching.
Technical Paper

Research on a Variable Swirl Intake Port for 4-Valve High-Speed DI Diesel Engines

1998-10-19
982680
A variable swirl intake port system for 4 valves/cylinder direct injection diesel engines was developed. This system combines two mutually independent intake ports, one of which is a helical port for generating an ultra-high swirl ratio and the other is a tangential port for generating a low swirl ratio. The tangential port incorporates a swirl control valve that controls the swirl ratio by varying the flow rate. To investigate the performance of the intake port system, steady-state flow tests were conducted in parallel with three-dimensional computations. In conducting the steady-state flow tests, it was found that a paddle wheel flow sensor was not suitable for evaluating the characteristics of the high-swirl port and that it was necessary to use an impulse swirl flow meter.
Technical Paper

Development of Nissan's New Generation 4-Cylinder Engine

2001-03-05
2001-01-0328
This paper describes the new inline 4-cylinder QR engine series that is available in 2.0-liter and 2.5-liter versions. The next-generation QR engine series incorporates new and improved technologies to provide an optimum balance of power, quietness and fuel economy. Its quiet operation results from the adoption of a compact balancer system and the reduced weight of major moving parts. Power and fuel economy have been enhanced by a two-stage cooling system, a continuous variable valve timing control system, a dual close coupled catalyst system, electronic throttle control and an improved direct-injection system. The latter includes an improved combustion chamber concept and improved fuel spray characteristics achieved by driving the injector by battery voltage. A lightweight and compact engine design has been achieved by adopting a high-pressure die cast aluminum cylinder block, resin intake manifold and rocker cover and a serpentine belt drive.
Technical Paper

Research on a Brake Assist System with a Preview Function

2001-03-05
2001-01-0357
Traffic accidents in Japan claim some 10,000 precious lives every year, and there is seemingly no end to the problem. In an effort to overcome this situation, vehicle manufacturers have been pushing ahead with the development of a variety of advanced safety technologies. Joint public-private sector projects related to Intelligent Transport Systems (ITS) are also proceeding vigorously. Most accidents can be attributed to driver error in recognition, judgment or vehicle operation. This paper presents an analysis of driver behavior characteristics in emergency situations that lead to an accident, focusing in particular on operation of the brake pedal. Based on the insights gained so far, we have developed a Brake Assist System with a Preview Function (BAP) designed to prevent accidents by helping drivers with braking actions. Experimental results have confirmed that BAP is effective in reducing the impact speed and the frequency of accidents in emergency situations.
X