Refine Your Search

Topic

Author

Search Results

Journal Article

Experimental Method Extracting Dominant Acoustic Mode Shapes for Automotive Interior Acoustic Field Coupled with the Body Structure

2013-05-13
2013-01-1905
For a numerical model of vibro-acoustic coupling analysis, such as a vehicle noise and vibration, both structural and acoustical dynamic characteristics are necessary to replicate the physical phenomenon. The accuracy of the analysis is not enough for substituting a prototype phase with a digital phase in the product development phases. One of the reasons is the difficulty of addressing the interior acoustical characteristics due to the complexity of the acoustical transfer paths, which are a duct and a small hole of trim parts in a vehicle. Those complex features affect on the nodal locations and the body coupling surface of acoustic mode shapes. In order to improve the accuracy of the analysis, the physical mechanisms of those features need to be extracted from experimental testing.
Technical Paper

Reduction of Vehicle Interior Noise Using Structural-Acoustic Sensitivity Analysis Methods

1991-02-01
910208
Since interior noise has a strong effect on vehicle salability, it is particularly important to be able to estimate noise levels accurately by means of simulation at the design stage. The use of sensitivity analysis makes it easy to determine how the analytical model should be modified or the structure optimized for the purpose of reducting vibration and noise of the structural-acoustic systems. The present work focused on a structural-acoustic coupling problem. As the coefficient matrices of a coupled structural-acoustic system are not symmetrical, the conventional orthogonality conditions obtained in structural dynamics generally do not hold true for the coupled system. To overcome this problem, the orthogonality and normalization conditions of a coupled system were derived by us. In this paper, our sensitivity analysis methods are applied to an interior noise problem of a cabin model.
Journal Article

Analysis of Oil Film Generation on the Main Journal Bearing Using a Thin-Film Sensor and Elasto-Hydrodynamic Lubrication (EHL) Model

2013-04-08
2013-01-1217
Reducing friction in the crankshaft main bearings is an effective means of improving the fuel efficiency of reciprocating internal combustion engines. To realize these improvements, it is necessary to understand the lubricating conditions, in particular the oil film pressure distributions between crankshaft and bearings. In this study, we developed a thin-film pressure sensor and applied it to the measurement of engine main bearing oil film pressure in a 4-cylinder, 2.5 L gasoline engine. This thin-film sensor is applied directly to the bearing surface by sputtering, allowing for measurement of oil film pressure without changing the shape and rigidity of the bearing. Moreover, the sensor material and shape were optimized to minimize influence from strain and temperature on the oil film pressure measurement. Measurements were performed at the No. 2 and 5 main bearings.
Technical Paper

Research on Crankshaft System Behavior Based on Coupled Crankshaft-Block Analysis

1997-10-01
972922
Achieving a multi-cylinder engine with excellent noise/vibration character sties and low friction at the main bearings requires an optimal design not only for the crankshaft construction but also for the bearing support system of the cylinder block. To accomplish that, it is necessary to understand crankshaft system behavior and the bearing load distribution for each of the main bearings. Crankshaft system behavior has traditionally been evaluated experimentally because of the difficulty in performing calculations to predict resonance behavior over the entire engine speed range. A coupled crankshaft-block analysis method has been developed to calculate crankshaft system behavior by treating vibration and lubrication in a systematic manner. This method has the feature that the coupled behavior of the crankshaft and the cylinder block is analyzed by means of main bearing lubrication calculations. This paper presents the results obtained with this method.
Technical Paper

Prediction of Crank Pin Journal Temperature Based on the Oil Flow Rate

1998-05-04
981403
Improving the durability and reliability of crankshaft bearings has become an important issue for automotive engines recently because of conflicting demands for lower fuel consumption and higher power output. This study focused on the connecting rod big-end bearing which is subjected to harsher operating conditions on account of these requirements. It is known that the crank pin journal temperature is an indicator of big-end bearing seizure. Having a simple method for predicting the crank pin journal temperature with the required accuracy at the design stage is indispensable to efficient engine development. In this study, analyses were first conducted to determine the oil flow rate at the big-end bearing which is a major determinant of the crank pin journal temperature.
Technical Paper

Improvement of Engine Sound Quality Through a New Flywheel System Flexiby Mounted to the Crankshaft

1990-02-01
900391
Engines that not only produce less noise but also provide good sound quality have been in increasing demand recently. Discomforting noise can sometimes be heard, however, during acceleration as the engine reaches higher levels of power and speed. This paper presents the results of a study into the bending vibration of the crankshaft-flywheel system, which clarify the mechanism producing discomforting noise during acceleration. Based on that study, a flexible flywheel has been developed which effectively reduces crankshaft bending vibration that is closely related to the frequency range of the discomforting noise. As a result, acceleration sound quality is greatly improved.
Technical Paper

Noise Detection Technology Development for Car Cabin

2008-04-14
2008-01-0272
Recently, it has been very important to reduce the noise, especially the Squeak and Rattle noise, for improving customer appeal of passenger vehicles. The Squeak and Rattle noise occurring inside the car cabin during vehicle operation is an especially large problem. This paper describes a newly developed measurement technology that uses the developed signal processing using the Beam-forming method and vibration sensor to identify the Squeak and Rattle noise sources, making it possible to determine effective countermeasures quickly. This new technology is used to identify all Squeak and Rattle noises at a time among many different noises, for example Wind noise, Engine noise and Road noise occurring during vehicle operation, and is expected to shorten substantially the time needed for noise analysis and contribute to quality improvements.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
Technical Paper

Prediction of Seat Vibration with a Seated Human Subject Using a Substructure Synthesis Method

2004-03-08
2004-01-0371
A seat vibration prediction technique using a substructure synthesis method was developed for use in ride comfort evaluations. The human body was modeled as a vibration transfer matrix using the mean apparent mass of human subjects, based on data measured in advance. Seat vibration characteristics were measured with rigid masses on the seat. The measured data and vibration transfer matrix of the human body were synthesized using a substructure synthesis method, to predict vibration of the seat cushion and backrest in an occupant-loaded condition without actually using human subjects. Results showed that seat vibration predicted with this method was very similar to, and more repeatable than, that obtained experimentally with human subjects.
Technical Paper

Analysis of Disc Brake Squeal, 1992

1992-02-01
920553
Eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. Considerable amount of research and development works have been done on the problem to date. In this study, we focused on the analyses of friction self-excited vibration and brake part resonance during high frequency brake squeal. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding velocities. Its vibration frequency can be calculated in relation to the mass and stiffness of the pad sliding surface. Frequency responses of the brake assembly were measured and the vibration modes of the pad, disc and caliper during squeal were identified through modal analysis. Further study led to the development of a computer simulation method for analyzing the vibration modes of brake parts. Analytical results obtained using the method agreed well with the corresponding experimental data.
Technical Paper

Development of a Ball Bearing Turbocharger

1990-02-01
900125
Nissan has added ball bearings to its “High-flow Ceramic Turbocharger”(1) (introduced in 1987) to improve acceleration response by reducing friction loss. The following programs were carried out in applying ball bearings to the turbocharger: Optimum bearing size and material were selected to assure long life; lubrication techniques were employed to achieve compatibility between acceleration response and durability; a thrust support system was designed to assure that the ball bearings endure thrust load which varies in direction and magnitude during engine operation; and the squeeze film damper was optimized to keep the turbocharger silent. These innovations have resulted in a practical ball-bearing turbocharger, which has been installed in Nissan's most recent Skyline model(released in May 1989). This is the first time a ball-bearing turbocharger has been applied to a passenger car.
Technical Paper

Nissan's New Multivalve DI Diesel Engine Series

1998-02-23
981039
This paper presents Nissan's new four-valve-per-cylinder direct injection (DI) diesel engine series consisting of a 2-liter class and 3-liter class. These engine series provide substantially improved power output along with lower noise and vibration levels, which have been traditional drawbacks of DI diesel engines. Nissan developed this engine series in response to the heightened need in recent years for passenger-car DI diesel engines with superior thermal efficiency, a characteristic advantageous for reducing CO2 emissions.
Technical Paper

Development of an Engine Mount Optimization Method Using Modal Parameters

1993-10-01
932898
The purpose of this study was to develop a simple optimization method for use in designing vibration insulators. With this method, stiffness, location and inclination of each insulator are used as design parameters. A performance index consisting of vehicle modal parameters expressed as eigenvalues and eigenvectors has been constructed to evaluate low-frequency idle/shake performance and higher frequency vibration performance involving road/engine inputs. Using this performance index and the sensitivity of the modal parameters, a designer can easily find a suitable direction for optimizing mount performance and thereby obtain a stable solution. The new method was employed to optimize an engine mount system. Experimental data obtained on the system validated the accuracy of the calculated results and showed an improvement in idle/shake performance. This method is a useful tool in designing optimum vibration insulators.
Technical Paper

Development of an Experimental Modal Synthesis Method for Coupled Acoustic-Structural Systems

1992-09-01
922089
This paper describes an experimental modal synthesis method for determining the noise characteristics of coupled acoustic-structural systems. This method was developed to provide an essential tool for analyzing passenger compartment noise levels. With this method, it is possible to obtain the coupled acoustic-structural parameters directly from experimental measurements of noise and vibration. The resulting modal parameters provide the basis for predicting how structural modifications will affect interior noise characteristics. This paper presents the theory on which the method is based and gives examples of its application to passenger compartment noise analyses.
Technical Paper

Reduction of Powerplant Vibration Level in the Acceleration Noise Region Based on Analysis of Crankshaft System Behavior

1992-09-01
922087
Increased attention has been directed toward noise and vibration characteristics of vehicles in recent years and the performance requirements in this area continue to become more rigorous every year. The acceleration noise in a frequency range of 250 ∼ 800Hz caused by powerplant vibration is important, and there is a need to reduce this noise level. In addition to reducing noise and vibration, however, there is also a growing need to achieve further weight reductions. Consequently, it is essential to reduce the weight of a powerplant without increasing its vibration levels. This make it necessary to predict powerplant vibration characteristics accurately at the planning and design stage so that suitable specifications can be determined. Specifications for reducing powerplant vibration have traditionally been found by experimentation. However, in powerplant excitation tests it has not been possible to take into consideration the effect of the crankshaft system on powerplant vibration.
Technical Paper

Application of Predictive Noise and Vibration Analysis to the Development of a New-Generation Lightweight 3-Liter V6 Nissan Engine

1994-03-01
940993
The target performance of a new engine has to be obtained under various restrictions such as cost and weihgt. It is particularly important to predict the engine noise and vibration performance at an early stage. For this purpose the analytical methods have been developed, which include the prediction of the absolute noise and vibration level by inputting a given exciting force into the model. These methods were applied to the development of the new engine. As a result, the characteristics of an aluminum cylinder block were used effectively to achieve a new lightweight V6 engine with low noise and vibration levels.
Technical Paper

A Study on Engine Bearing Performance Focusing on the Viscosity-Pressure Characteristic of the Lubricant and Housing Stiffness

1996-05-01
961144
It is important to understand the influence of housing stiffness on bearing performance, particularly for the connecting rod bearings of automotive engines. It is known that the engine lubricant shows a piezoviscous characteristic whereby its viscosity changes under the influence of pressure. Engine bearings under a heavy load are apt to be influenced in this way. In this study, the effects of connecting rod stiffness and lubricant piezoviscosity on bearing performance were examined by elastohydrodynamic lubrication (EHL) analysis under conditions corresponding to the high-speed operation of an actual engine. The results indicated that under such heavy load conditions housing stiffness greatly affects friction loss because of lubricant piezoviscosity. It was also found that the piezoviscosity of the lubricant has a large effect on bearing performance, as does its viscosity under atmospheric pressure.
Technical Paper

Achieving a Vehicle Level Sound Quality Target by a Cascade to System Level Noise and Vibration Targets

2005-05-16
2005-01-2394
This paper describes a process to achieve a pre-defined vehicle level interior sound quality target, by a sound engineering cascade to targeted noise and vibration development at the system level. Air-borne and structure-borne contributors to interior sound are identified at the system level using a comprehensive Transfer Path Analysis (TPA) in both the frequency and time domains. For significant contributors, the relative importance of the source system (powertrain) and path system (vehicle) are determined. System level changes are simulated, and their effect on interior sound evaluated using TPA. A set of feasible changes is identified that, when combined, achieves the vehicle level interior sound quality target. This set of changes defines system level targets for noise and vibration development, cascaded from the vehicle level target.
Technical Paper

Analytical Study on Engine Vibration Transfer Characteristics Using Single-Shot Combustion

1981-02-01
810403
In order to demonstrate the generation mechanism of “combustion noise” separately from “mechanical noise,” the process of transfer in which vibration travels to each engine portion was analyzed through single-shot combustion of a propane-air mixture in the combustion chamber with the crankshaft fixed at a given angle. The effect of the natural frequency of each portion of the engine on the vibration transfer characteristics is discussed by introducing a vibration transfer function. The transfer paths of exciting forces which are caused by the combustion are quantitatively clarified.
Technical Paper

Analysis of Vibrational Modes of Vehicle Steering Mechanisms

1971-02-01
710627
An analysis was made of vibration phenomena in the steering system of a vehicle, when the front wheels have some amount of unbalance. The program included vehicle running tests and bench tests to ascertain some of the factors influencing vibration behavior. A mathematical model of the vibration system was simulated on a digital computer in as much detail as possible. The resultant understanding of the dynamics of the system as a whole led to an extensive theoretical analysis of selected key parameters.
X