Refine Your Search

Topic

Author

Search Results

Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Journal Article

Brain Waves Measurement Based Evaluation of Mental Workload Related to Visual Information While Driving

2011-04-12
2011-01-0593
In order to build a useful and comfortable in-car human machine interface systems, the information presentation method should be easy to understand (low mental workload) and one should be able to respond with ease to the information presented (low response workload). We are making efforts to establish an evaluation method that would differentiate between mental workload and response workload. Here, we present the results of our trial using brain waves measurements (Eye Fixation Related Potentials). We focus on the relation between P3 latencies and drivers response workload compared to mental workload in a task involving eye movements. Previous experiments showed that P3 latency correlates strongly with the amount of information presented. The current experiment shows that P3 latencies seem to be independent to the type of response the subject is requested to perform.
Technical Paper

Application of CAE Technology to the Development of Plastic Automotive Components

1991-02-01
910877
The use of CAE software in developing plastic components has advanced rapidly in recent years. This progress has been supported by the development of practical analytical tools, based on the finite element and boundary element methods, and on the dramatic improvements seen in computer performance. Following the introduction of a flow analysis program in 1982, Nissan has developed and implemented advanced programs for use in developing plastic components and has integrated the programs into a unified in-house system. This system is being utilized at the design and manufacturing stages of interior and exterior trim parts and has produced concrete results in different phases of component development. Work is now proceeding on the development of a system that can simultaneously analyze both the component performance and the factors that need to be considered in the manufacturing process.
Journal Article

Analysis of Oil Film Generation on the Main Journal Bearing Using a Thin-Film Sensor and Elasto-Hydrodynamic Lubrication (EHL) Model

2013-04-08
2013-01-1217
Reducing friction in the crankshaft main bearings is an effective means of improving the fuel efficiency of reciprocating internal combustion engines. To realize these improvements, it is necessary to understand the lubricating conditions, in particular the oil film pressure distributions between crankshaft and bearings. In this study, we developed a thin-film pressure sensor and applied it to the measurement of engine main bearing oil film pressure in a 4-cylinder, 2.5 L gasoline engine. This thin-film sensor is applied directly to the bearing surface by sputtering, allowing for measurement of oil film pressure without changing the shape and rigidity of the bearing. Moreover, the sensor material and shape were optimized to minimize influence from strain and temperature on the oil film pressure measurement. Measurements were performed at the No. 2 and 5 main bearings.
Technical Paper

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

1997-10-01
972837
Detergent additives in automotive gasoline fuel are mainly designed to reduce deposit formation on intake valves and fuel injectors, but it has been reported that some additives may contribute to CCD formation. Therefore, a standardized bench engine test method for CCDs needs to be developed in response to industry demands. Cooperative research between the Petroleum Association of Japan (PAJ) and the Japan Automobile Manufacturers Association, Inc. (JAMA), has led to the development of a 2.2L Honda engine dynamometer-based CCD test procedure to evaluate CCDs from fuel additives. Ten automobile manufacturers, nine petroleum companies and the Petroleum Energy Center joined the project, which underwent PAJ-JAMA round robin testing. This paper describes the CCD test development activities, which include the selection of an engine and the determination of the optimum test conditions and other test criteria.
Technical Paper

Research on Crankshaft System Behavior Based on Coupled Crankshaft-Block Analysis

1997-10-01
972922
Achieving a multi-cylinder engine with excellent noise/vibration character sties and low friction at the main bearings requires an optimal design not only for the crankshaft construction but also for the bearing support system of the cylinder block. To accomplish that, it is necessary to understand crankshaft system behavior and the bearing load distribution for each of the main bearings. Crankshaft system behavior has traditionally been evaluated experimentally because of the difficulty in performing calculations to predict resonance behavior over the entire engine speed range. A coupled crankshaft-block analysis method has been developed to calculate crankshaft system behavior by treating vibration and lubrication in a systematic manner. This method has the feature that the coupled behavior of the crankshaft and the cylinder block is analyzed by means of main bearing lubrication calculations. This paper presents the results obtained with this method.
Technical Paper

Simultaneous Attainment of Low Fuel Consumption High Output Power and Low Exhaust Emissions in Direct Injection SI Engines

1998-02-01
980149
This paper describes simultaneous attainment in improving fuel consumption, output power and reducing HC emissions with a direct injection S.I. engine newly developed in Nissan. Straight intake port is adopted to increase discharge coefficient under WOT operation and horizontal swirl flow is generated by a swirl control valve to provide stable stratified charge combustion under part load conditions. As a result, fuel consumption is reduced by more than 20% and power output is improved by approximately 10%. Moreover, unburned HC is reduced by equivalently 30% in engine cold start condition. An application of diagnostic and numerical simulation tools to investigate and optimize various factors are also introduced.
Technical Paper

Direct Simulation for Aerodynamic Noise from Vehicle Parts

2007-08-05
2007-01-3461
Flows around a forward facing step and a fence are simulated on structured grid to estimate aerodynamic noise by using direct simulation. Calculated results of sound pressure level show quantitatively good agreement with experimental results. To estimate aerodynamic noise from 3D complex geometry, a simplified side mirror model is also calculated. Averaged pressure distribution on the mirror surface as well as pressure fluctuations on the mirror surface and ground are simulated properly. However, calculated result of sound pressure level at a location is about 20dB higher than experiment due to insufficient spatial resolution. To capture the propagation of sound waves, more accuracy seems to be required.
Technical Paper

Development of High-Performance PP Masterbatch for Interior Parts

2007-08-05
2007-01-3733
The authors have developed a high-performance talc masterbatch (hereinafter HPTMB) to achieve sufficient flexural modulus and impact resistance at the same time using inexpensive conventional PP as a base resin. Highly compressed fine talc and elastomers were selected as the filler and the impact resistance improver by considering their dispersion in the molded parts. The mixing process was also optimized. In order to stabilize impact resistance after molding, several elastomers were selected based on molecular weights and melting points. The developed HPTMB showed excellent balanced properties for instrument panels using inexpensive conventional PP as a base resin. The HPTMB is applied to the instrument panel of a Mitsubishi mini car. This technology will enable us to reduce the material cost by consolidating automotive interior plastic materials as well as by using available conventional PP.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

Prediction of Crank Pin Journal Temperature Based on the Oil Flow Rate

1998-05-04
981403
Improving the durability and reliability of crankshaft bearings has become an important issue for automotive engines recently because of conflicting demands for lower fuel consumption and higher power output. This study focused on the connecting rod big-end bearing which is subjected to harsher operating conditions on account of these requirements. It is known that the crank pin journal temperature is an indicator of big-end bearing seizure. Having a simple method for predicting the crank pin journal temperature with the required accuracy at the design stage is indispensable to efficient engine development. In this study, analyses were first conducted to determine the oil flow rate at the big-end bearing which is a major determinant of the crank pin journal temperature.
Technical Paper

Development of Four Cylinder SR Engine

1990-09-01
901714
The SR engine is a new medium-size, all aluminum (cylinder block, head, rocker cover and oil pan) in-line 4-cylinder gasoline powerplant developed as a replacement for CA engine in Nissan's compact passenger cars. The development aim set for this engine was to achieve excellent power output and ample torque in the middle-and high-speed ranges, as well as a clear, linear engine sound up to the red zone. These performance targets have been achieved through the use of the 4-valve-per-cylinder DOHC design featuring a Y-shaped valve rocker arm system. This system allows a straight intake port for high power output and a narrow valve angle for a compact combustion chamber. The result is ample torque output as well as good fuel economy.
Technical Paper

Development of the Full Active Suspension by Nissan

1990-09-01
901747
Nissan has developed a hydraulic active suspension which uses an oil pump as its power source to produce hydraulic pressure that negates external forces acting on the vehicle. As a result, the suspension system is able to control vehicle movement freely and continuously. This control capability makes it possible to provide higher levels of ride comfort and vehicle dynamics than are obtainable with conventional suspension systems. The major features of the hydraulic system include: (1) active bouncing control using a skyhook damper, (2) a frequency-sensitive damping mechanism and (3) active control over roll, dive and squat.
Technical Paper

Trends in Vehicle Information Displays in the Multimedia Era

1998-10-19
98C035
Flat panel displays for automobiles are facing a new era with the development of navigation systems. As navigation systems become more important as driver's assistance devices, development of birds-eye-view and 3D displays continues, as well as improvements for larger display screens and higher mounting positions. In response to the progress of mobile multimedia technologies, demands for larger display screens and larger aspect ratios have been increasing. Significance for improvements to anti-glare features or view angles has increased as they provide better visibility and the increase layout options. The use of human machine information interaction, which interfaces visual, audio and tactile senses, makes it possible to realize safer, more convenient and comfortable multimedia era vehicle
Technical Paper

A System for Neutralizing Static Electricity on the Human Body in a Vehicle

2008-04-14
2008-01-0786
People often feel discomfort when entering or exiting a vehicle because of a static electric shock. In the electronics industry, ionizers have been developed to prevent electrostatic discharges and contamination sticking around or on circuit components. Ionizers incorporate corona discharge principles to neutralize the static electric field. Using this idea, we developed an in-vehicle system to neutralize the human body charge. To accomplish this, the mechanism by which the human body attains a charge when exiting a vehicle was first defined. That definition was then used to determine the design characteristics of the system.
Technical Paper

High Throughput Computation of Optical Flow with a High Frame-Rate Camera

2008-04-14
2008-01-0900
This paper presents a new method for calculating optical flow using data from a high frame-rate camera. We focused on a feature of image data captured with a high frame-rate camera in which objects do not move more than one pixel between successive frames. This approach eliminates repetitive processing for object identification among frames taken at different sampling times. High-speed processing hardware architecture was designed with sequential processing only, and the algorithm was implemented in a field programmable gate array. The resultant unit can calculate optical flow for a 640×120 pixel size image with a 480-Hz processing cycle and 0.5-μsec processing latency.
Technical Paper

Research on a Variable Swirl Intake Port for 4-Valve High-Speed DI Diesel Engines

1998-10-19
982680
A variable swirl intake port system for 4 valves/cylinder direct injection diesel engines was developed. This system combines two mutually independent intake ports, one of which is a helical port for generating an ultra-high swirl ratio and the other is a tangential port for generating a low swirl ratio. The tangential port incorporates a swirl control valve that controls the swirl ratio by varying the flow rate. To investigate the performance of the intake port system, steady-state flow tests were conducted in parallel with three-dimensional computations. In conducting the steady-state flow tests, it was found that a paddle wheel flow sensor was not suitable for evaluating the characteristics of the high-swirl port and that it was necessary to use an impulse swirl flow meter.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
Technical Paper

Development of a New 5.6 L V8 Gasoline Engine

2010-04-12
2010-01-1320
This paper describes the new VK56VD engine, which was developed in response to growing demand for cleaner automobiles, better fuel economy, and improved engine performance. A 5.6 L V8 engine, the VK56VD will go into the new Infiniti M56 premium sport luxury sedan. To boost power and efficiency and lessen its environmental impact, this engine will utilize key technologies such as Continuous Variable Valve Event and Lift (VVEL) and Direct Injection Gasoline (DIG). Details of the VK56VD are presented here along with highlights of the applied technologies and the development means.
Technical Paper

Prediction of Seat Vibration with a Seated Human Subject Using a Substructure Synthesis Method

2004-03-08
2004-01-0371
A seat vibration prediction technique using a substructure synthesis method was developed for use in ride comfort evaluations. The human body was modeled as a vibration transfer matrix using the mean apparent mass of human subjects, based on data measured in advance. Seat vibration characteristics were measured with rigid masses on the seat. The measured data and vibration transfer matrix of the human body were synthesized using a substructure synthesis method, to predict vibration of the seat cushion and backrest in an occupant-loaded condition without actually using human subjects. Results showed that seat vibration predicted with this method was very similar to, and more repeatable than, that obtained experimentally with human subjects.
X