Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development of Exhaust and Evaporative Emissions Systems for Toyota THS II Plug-in Hybrid Electric Vehicle

2010-04-12
2010-01-0831
Exhaust and evaporative emissions systems have been developed to match the characteristics and usage of the Toyota THS II plug-in hybrid electric vehicle (PHEV). Based on the commercially available Prius, the Toyota PHEV features an additional external charging function, which allows it to be driven as an electric vehicle (EV) in urban areas, and as an hybrid electric vehicle (HEV) in high-speed/high-load and long-distance driving situations. To reduce exhaust emissions, the conventional catalyst warm up control has been enhanced to achieve emissions performance that satisfies California's Super Ultra Low Emissions Vehicle (SULEV) standards in every state of battery charge. In addition, a heat insulating fuel vapor containment system (FVS) has been developed using a plastic fuel tank based on the assumption that such a system can reduce the diffusion of vapor inside the fuel tank and the release of fuel vapor in to the atmosphere to the maximum possible extent.
Technical Paper

Development of JASO GLV-1 0W-8 Low Viscosity Engine Oil for Improving Fuel Efficiency considering Oil Consumption and Engine Wear Performance

2020-04-14
2020-01-1423
Engine oil with viscosity lower than 0W-16 has been needed for improving fuel efficiency in the Japanese market. However, lower viscosity oil generally has negative aspects with regard to oil consumption and anti-wear performance. The technical challenges are to reduce viscosity while keeping anti-wear performance and volatility level the same as 0W-20 oil. They have been solved in developing a new engine oil by focusing on the molybdenum dithiocarbamate friction modifier and base oil properties. This paper describes the new oil that supports good fuel efficiency while reliably maintaining other necessary performance attributes.
Journal Article

Friction Coefficient Variation Mechanism under Wet Condition in Disk Brake (Variation Mechanism Contributing Wet Wear Debris)

2016-09-18
2016-01-1943
This paper deals with friction under wet condition in the disk brake system of automobiles. In our previous study, the variation of friction coefficient μ was observed under wet condition. And it was experimentally found that μ becomes high when wear debris contains little moisture. Based on the result, in this paper, we propose a hypothesis that agglomerates composed of the wet wear debris induce the μ variation as the agglomerates are jammed in the gaps between the friction surfaces of a brake pad and a disk rotor. For supporting the hypothesis, firstly, we measure the friction property of the wet wear debris, and confirm that the capillary force under the pendular state is a factor contributing to the μ variation. After that, we simulate the wear debris behavior with or without the capillary force using the particle-based simulation. We prepare the simulation model for the friction surfaces which contribute to the friction force through the wear debris.
Journal Article

Development of a Diesel Emission Catalyst System for Meeting US SULEV Standards

2008-04-14
2008-01-0449
In recent years, catalyst systems such as a lean NOx trap (LNT) catalyst system and a urea selective catalytic reduction (SCR) system have been developed to obtain cleaner diesel emissions. At Nissan, we developed an emission control system for meeting Tier 2 Bin 5 requirements in 2003. On the basis of that technology, a new HC-NOx trap catalyst system has now been developed that complies with the SULEV standards without increasing the catalyst volume and precious metal loading. Compliance with the SULEV standards requires a further reduction of HC (NMHC) emissions by 84% and NOx by 60% compared with the emission performance Tier 2 Bin 5 compliant catalyst system. Consequently high conversion performance for both HCs and NOx is needed. An investigation of HC emission behavior under the FTP75 mode showed that a reduction of cold-phase HCs was critical for meeting the standard. Large quantities of HCs above C4 are emitted in the cold state.
Technical Paper

Analysis of Thermal Fatigue Resistance of Engine Exhaust Parts

1991-02-01
910430
The thermal fatigue resistance of engine exhaust system parts has conventionally been evaluated in thermal fatigue tests conducted with a restrained specimen. However, the test results have not always been consistent with data obtained in engine endurance tests. Two new evaluation methods have been developed to overcome this problem. One is a method of predicting thermal fatigue life on the basis of nonlinear elastic and plastic thermal analyses performed with a finite element model and the ABAQUS program. The other is a method of evaluating exhaust system parts using an exhaust system simulator. This paper describes the concepts underlying the two methods and their relative advantages.
Technical Paper

Effect of California Phase 2 Reformulated Gasoline Specifications on Exhaust Emission Reduction; Part 3

1997-10-01
972851
In order to investigate the effect of sulfur and distillation properties on exhaust emissions, emission tests were carried out using a California Low Emission Vehicle (LEV) in accordance with the 1975 Federal Test Procedure ('75 FTP). To study the fuel effect on the exhaust emissions from different systems, these test results were compared with the results obtained from our previous studies using a 92MY vehicle for California Tier 1 standards and a 94MY vehicle for California TLEV standards. (1)(2) First, the sulfur effect on three regulated exhaust emissions (HC, CO and NOx) was studied. As fuel sulfur was changed from 30 to 300 ppm, the exhaust emissions from the LEV increased about 20% in NMHC, 17% in CO and 46% in NOx. To investigate the recovery of the sulfur effect, the test fuel was changed to 30 ppm sulfur after the 300 ppm sulfur tests. The emission level did not recover to that of the initial 30 ppm sulfur during three repeats of the FTP.
Technical Paper

The Effect of Belt-Drive CVT Fluid on the Friction Coefficient Between Metal Components

1997-10-01
972921
A block-on-ring friction and wear testing machine (LFW-1) was used as a test method for making fundamental evaluations of the effect of the Belt-Drive Continuously Variable Transmission(B-CVT) fluid on the friction coefficient between the belt and pulleys. The results confirmed that this method can simulate the friction phenomena between the belt and pulleys of an actual transmission. The mechanism whereby ZDDP and some Ca detergents improve the torque capacity of a B-CVT was also investigated along with the effect of the deterioration of these additives on the friction coefficient. It was found that these additives form a film, 80-90 nm in thickness, on the sliding surface, which is effective in increasing the friction coefficient. The friction coefficient declined with increasing additive deterioration. The results of a 31P-NMR analysis indicated that the decline closely correlated with the amount of ZDDP in the B-CVT fluid.
Technical Paper

Wear Analysis of DLC Coating in Oil Containing Mo-DTC

2007-07-23
2007-01-1969
Diamond-like carbon (DLC) coating has excellent properties like high hardness and low friction. So it has attracted considerable attention in recent years as a low-friction coating material. However, some DLC coatings display increased wear in oil containing Mo-DTC (Molybdenum-dithiocarbamates). Wear analyses of sliding surface after block-on-ring tests were conducted suggest that the decomposition product from Mo-DTC, MoO3, reacts with active sites in the DLC to promote the wear of DLC.
Technical Paper

Thermal Fatigue Life Prediction for Stainless Steel Exhaust Manifold

1998-02-23
980841
This paper describes the application of a life prediction method for stainless steel exhaust manifolds. Examination of the exhaust manifold cracks indicated that many of the failures could be attributed to out-of-phase thermal fatigue due to compressive strains that occur at high temperatures. Therefore, the plastic strain range was used as the crack initiation criteria. In addition, the comparison of the calculated thermal fatigue stress-strain hysteresis to the experimental hysteresis made it clear that it was essential to use the stress-strain data that was obtained through tensile and compression testing by keeping the test specimens at the maximum temperature of the thermal fatigue test mode. A finite element crack prediction method was developed using the aforementioned material data and good results were obtained.
Technical Paper

Establishment of a Method for Predicting Cam Follower Wear in the Material Development Process

1990-10-01
902087
Many studies have been reported concerning fundamental tribological research aimed at reducing the severe valve train wear that occurs in internal combustion engines. In this paper, cam follower wear was theoretically and experimentally analyzed at the material development stage. Statistical methods have been applied to practical use in determining the material properties quantitatively. Based on the results, a method for predicting cam follower wear has been derived which has made it possible to develop new valve train systems more efficiently. Further, a guideline for developing new wear resistant materials was also clarified. Finally, the precision high chrominum cast iron rocker arm is described, along with its application to a new NISSAN high-performance 4-cylinder DOHC engine, as an example of the use of this method to develop new wear-resistant materials.
Technical Paper

Development of Lightweight Connecting Rod Based on Fatigue Resistance Analysis of Microalloyed Steel

1990-02-01
900454
Application of microalloyed steel to automobile parts is becoming increasingly common in Japan. However, fatigue properties of actual automotive forged parts with slight notches on their surface have not been fully clarified. In this work, the fatigue properties of microalloyed steel were studied using test specimens and also actual automotive parts. The results indicated that microalloyed steel with an optimal microstructure showed higher notch fatigue resistance than quenched-tempered steel. The improvement of material technology and the application of microalloyed steel have not only served to bring product costs down, but have paved the way for part weight reductions. Lightweight connecting rods for the newly developed Nissan engines have been produced, contributing to improved engine performance.
Technical Paper

A Study of an Analysis Method for Trace Substances in Vehicle Exhaust Gas

2007-04-16
2007-01-0306
A new method for measuring unregulated substances in the exhaust gas is being investigated to clarify the influence of the vehicles' exhaust emissions into the environment. This paper explains our work on developing an analysis method for detecting and quantifying trace substances in the exhaust gas. A new analysis method was examined that uses thermal desorption to analyze trace amounts of polycyclic aromatic hydrocarbons (PAHs) in vehicle exhaust gas. This technique is faster than conventional methods and does not require any preconditioning of the samples before analysis. While lead and chloromethane were detected in the exhaust gas samples, it was made clear that these substances did not originate in the engine system. Accordingly, the results of this study indicate that careful attention must be paid to the test environment and the presence of measurement interfering substances in exhaust samples when measuring trace constituents in the exhaust gas from low-emission vehicles.
Technical Paper

Hybrid System Development for High-Performance All Wheel Drive Vehicle

2007-04-16
2007-01-0296
The original Toyota Hybrid System (THS) was installed in the Prius and was introduced in 1997 as the world's first mass-produced hybrid passenger car. Since then, THS has been continuously improved. In 2003 THS-II (marketed as Hybrid Synergy Drive [HSD]), was installed in a new larger Prius. In 2006 HSD was installed in a Rear Wheel Drive Vehicle: the LEXUS GS450h. This system achieved both 4.5-liter class power performance and compact class fuel economy with outstanding emissions performance. In 2007, this system is expanded to a mechanical all-wheel-drive(AWD) in the LEXUS LS600hL(with new V8 engine). This paper will explain this hybrid system which achieved both V12 class power performance and mid-size class fuel economy, while meeting the most stringent emission standard SULEV as a full-size vehicle.
Technical Paper

Analysis of Tooth Surface Fatigue Strength of Automotive Transmission Gears

2007-04-16
2007-01-0117
The life of automotive transmission gears today is often governed by pitting fatigue life. Being able to predict pitting fatigue life accurately is a crucial issue. Pitting fatigue life is substantially influenced by surface hardness and tooth surface geometry. For that reason, this study examined a new method of predicting pitting fatigue life that takes into account changes in these factors over time. This method makes it possible to predict the pitting fatigue life of automotive transmission gears under a wide range of evaluation conditions with markedly better accuracy than conventional methods used previously.
Technical Paper

Evaluations of Physical Fatigue during Long-term Driving with a New Driving Posture

2007-04-16
2007-01-0348
In a previous study, we developed and validated a new driving posture focused on biomechanical loads for physical fatigue reduction in static long-term sitting. In this study, the posture was evaluated in dynamic long-term driving condition by qualitative and quantitative measurements. The results showed physical fatigue of the new posture was halved in comparison with the one of the conventional posture in same car by subjective evaluations. Physiological indices had same tendency with subjective evaluations. From the results, we extracted seven physiological indices as good measures of physical fatigue while driving. Therefore, fatigue reduction of the new posture was qualitatively validated by physiological measurements.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
Technical Paper

Fatigue Life Prediction on Rough Road Using Full Vehicle Co-simulation Model with Suspension Control

2010-04-12
2010-01-0952
A full vehicle multi-body dynamic (MBD) model with suspension control system is developed for fatigue life prediction under rough road condition. The model consists of tires, a trimmed body, heavy attached parts, powertrain, suspension, joints, and a driver model, and includes a suspension control system that varies characteristics of the suspension according to the rough road inputs. For tires, a commercial MBD tire model is employed with identifiable parameters. The models are simulated to run on the optically measured road surface of the proving ground. Apart from the trimmed body, several important heavy attached parts are modeled separately, that represent dynamic behavior that induces complex body input load. These parts, along with suspension and powertrain systems are connected to the body using nonlinear elements such as joints, springs, and dampers. Contact conditions are used to represent mount bushing, hood lock, stopper rubber, etc.
Technical Paper

Newly Developed AZ Series Engine

2001-03-05
2001-01-0327
The design of the newly developed Toyota AZ series 4 cylinder engine has been optimized through both simulations and experiments to improve heat transfer, cooling water flow, vibration noise and other characteristics. The AZ engine was developed to achieve good power performance and significantly reduced vibration noise. The new engine meets the LEV regulations due to the improved combustion and optimized exhaust gas flow. A major reduction in friction has resulted in a significant improvement in fuel economy compared with conventional models. It also pioneered a newly developed resin gear drive balance shaft.
Technical Paper

Development of New-Generation Hybrid System THS II - Drastic Improvement of Power Performance and Fuel Economy

2004-03-08
2004-01-0064
Toyota Hybrid System (THS), the powertrain that combines a gasoline engine and an electric motor was first introduced in December 1997. It became the first mass-produced hybrid passenger vehicle in the world, gaining a reputation as a highly innovative vehicle, and its cumulative worldwide sales have exceeded 120,000 units. In 2003, THS had a further evolution. The “new-generation Toyota Hybrid System (THS II)” would be introduced on the new Prius. This report shall explain “THS II”, which achieved drastic improvements in power performance and fuel economy, while securing the most stringent emission standard Advanced Technology Partial Zero Emission Vehicle (ATPZEV).
Technical Paper

Analysis of the HC Behavior in the Air Intake System while Vehicle is Parked

2004-03-08
2004-01-0141
CARB (California Air Resources Board) has required the evaporative emissions to be restricted to 1/4th of the parameter stated in the 1995 regulations. Furthermore, hydrocarbons (hereafter, HC) from the fuel system must be reduced to near 0.0 grams, according to the PZEV (Partial Zero Emission Vehicle) regulations enforced from 2003. The wet film in intake ports and fuel leaking from the injector nozzles evaporate and diffuse while the car is parked, and consequently may cause HC to leak the air cleaner inlet. The air cleaner which prevents HC leakage from the air intake system is already in mass production. In the course of designing this product to be installed in a vehicle, the authors developed a method to estimate the amount of HC that reaches the air cleaner. Based on detailed investigation on HC distribution and the changes that occur during parking, the HC amount reaching the air cleaner was calculated by both the equation of diffusion and the equation of state.
X