Refine Your Search

Topic

Author

Search Results

Journal Article

Measurement of Piston Secondary Motion Using the New Digital Telemeter

2013-04-08
2013-01-1708
The authors have developed a measurement technique using a new digital telemeter which measures the piston secondary motion as ensuring high accuracy while under the operation. We applied this new digital telemeter to several measurements and analysis on the piston secondary motion that can cause piston noises, and here are some of the results from our measurement. We have confirmed that these piston motions vary by only several tenths of millimeter changes of the piston specifications such as the piston-pin offset and the center of gravity of the piston. As in other cases, we have found that a mere change of pressure in the crankcase or the amount of lubricating oil supplied on the cylinder bore varies the piston motion that may give effect on the piston noises.
Technical Paper

Development of JASO GLV-1 0W-8 Low Viscosity Engine Oil for Improving Fuel Efficiency considering Oil Consumption and Engine Wear Performance

2020-04-14
2020-01-1423
Engine oil with viscosity lower than 0W-16 has been needed for improving fuel efficiency in the Japanese market. However, lower viscosity oil generally has negative aspects with regard to oil consumption and anti-wear performance. The technical challenges are to reduce viscosity while keeping anti-wear performance and volatility level the same as 0W-20 oil. They have been solved in developing a new engine oil by focusing on the molybdenum dithiocarbamate friction modifier and base oil properties. This paper describes the new oil that supports good fuel efficiency while reliably maintaining other necessary performance attributes.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Journal Article

Analysis of Piston Friction - Effects of Cylinder Bore Temperature Distribution and Oil Temperature

2011-08-30
2011-01-1746
Hybrid vehicles (HVs) are becoming more widely used. Since HVs supplement engine drive with motor power, the lubricant oil temperature remains at a lower level than in a conventional gasoline vehicle. This study analyzed the effect of cylinder bore temperature and lubricant oil temperature on engine friction. The results showed that, although the lubricant oil temperature was not relevant, the bore temperature had significant effect on piston friction. It was found that raising the temperature of the middle section of the cylinder bore was the most effective way of reducing piston friction.
Journal Article

Pre-Ignition of Gasoline-Air Mixture Triggered by a Lubricant Oil Droplet

2014-10-13
2014-01-2627
This paper presents the effects of a lubricant oil droplet on the start of combustion of a fuel-air mixture. Lubricant oil is thought to be a major source of low-speed pre-ignition in highly boosted spark ignition engines. However, the phenomenon has not yet been fully understood because its unpredictability and the complexity of the mixture in the engine cylinder make analysis difficult. In this study, a single oil droplet in a combustion cylinder was considered as a means of simplifying the phenomenon. The conditions under which a single oil droplet ignites earlier than the fuel-air mixture were investigated. Tests were conducted by using a rapid compression expansion machine. A single oil droplet was introduced into the cylinder through an injector developed for this study. The ignition and the flame propagation were observed through an optical window, using a high-speed video camera.
Technical Paper

Challenge to the Diesel Engine Lubrication with Fuel

2007-07-23
2007-01-1978
A study of diesel fuel as a lubricant for diesel engines was conducted with the aim of dramatically reducing engine friction and eliminating the need to change the lubricating oil. A prototype single-cylinder engine modified for diesel fuel lubrication was made, and it was confirmed that firing operation is possible. Piston friction during the firing operation was reduced by modifying the shape of the cylinder liner surface to improve the retention of the lubricating oil. The study produced valid findings concerning engine lubrication, not only with diesel fuel, but also with ultra-low viscosity oil.
Technical Paper

Analysis of Con-Rod Big-End Bearing Lubrication on the Basis of Oil Supply Rate

1998-10-19
982439
The purpose of this study is to analyze con-rod bearing lubrication under reduced oil supply rate conditions. An engine was modified to measure the oil supply rate to a con-rod big-end bearing. Then the effects of the oil supply rate on bearing temperatures and the contact between a journal and a bearing were investigated in order to analyze lubrication characteristics. The bearing temperatures increased in accordance with reduced oil supply rate. On the other hand, the contact frequency hardly changed under almost all conditions, but steeply increased near one-third of the standard oil supply rate at the highest speed of 5000 rpm in the experiments. The results show that the reduced oil supply rate decreases the cooling effect but the hydrodynamic lubrication was sufficiently achieved except the above-mentioned severe condition.
Technical Paper

Research on High Strength Material and Its Surface Modification for Parts Used Under Rolling Contact Cycles

2004-03-08
2004-01-0633
This paper describes a newly developed steel composition and surface modification methods for improving the rolling contact fatigue strength of parts used in transmission systems, especially continuously variable transmissions (CVTs) to increase their torque capacity. The mechanisms of two types of typical rolling contact fatigue phenomenon in case hardening steel were examined with the aim of improving rolling contact fatigue strength. One concerned white etching constituents (WEC) and the other one concerned peculiar microstructural changes caused by hydrogen originating from decomposition of the lubrication oil as a result of repeated rolling contact stress cycles. The rolling contact fatigue strength limit due to WEC has been improved markedly by dispersing fine M23C6 alloy carbides in the martensite matrix at the subsurface layer of parts.
Technical Paper

Research on the Effect of Lubricant Oil and Fuel Properties on LSPI Occurrence in Boosted S. I. Engines

2016-10-17
2016-01-2292
The effects of lubricant oil and fuel properties on low speed pre-ignition (LSPI) occurrence in boosted S.I. engines were experimentally evaluated with multi-cylinder engine and de-correlated oil and fuel matrices. Further, the auto-ignitability of fuel spray droplets and evaporated homogeneous fuel/oil mixtures were evaluated in a combustion bomb and pressure differential scanning calorimetry (PDSC) tests to analyze the fundamental ignition process. The work investigated the effect of engine conditions, fuel volatility and various lubricant additives on LSPI occurrence. The results support the validity of aspects of the LSPI mechanism hypothesis based on the phenomenon of droplets of lubricant oil/fuel mixture (caused by adhesion of fuel spray on the liner wall) flying into the chamber and autoigniting before spark ignition.
Technical Paper

Development of Novel Friction Modifier Technology Part 2: Vehicle Testing

2011-08-30
2011-01-2126
Requirements to reduce emissions and improve vehicle fuel economy continue to increase, spurred on by agreements such as the Kyoto Protocol. Lubricants can play a role in improving fuel economy, as evidenced by the rise in the number of engine oil specifications worldwide that require fuel economy improvements. A novel friction modifier technology has been developed to further improve vehicle fuel economy. The development of this novel friction modifier technology which contains only N,O,C,H was previously published along with the initial demonstration of performance in motorized Toyota engines. In order to validate this performance in fired engine tests, oil was evaluated in a Toyota Corolla Fielder with a 1500 cc gasoline engine. Testing was conducted in the Japanese 10-15 and JC08 modes, as well as the European EC mode, and the US FTP mode.
Technical Paper

Effect of Gasoline Engine Oil Components on Intake Valve Deposit

1993-10-01
932792
This paper describes lubricant technology which helps to prevent intake valve deposit (IVD) formation for use with conventional gasolines without detergents, as well as the IVD evaluation method used in testing. The FED 3462 method was modified to establish a new panel coking test method, with excellent correlation with the engine stand IVD test, for the quantitative evaluation of IVD. Tests have shown that IVD increases when the volatility of base oils becomes higher due to condensation and polymerization of engine oil additives. Furthermore, viscosity index improvers, metallic detergents and ashless dispersants have considerable effect on IVD formation. Based on various experiments, the authors have established a formulation technology for engine oils to lower IVD, which they incorporated in two newly formulated SG oils with lower IVD than conventional 5W-30 SG oil.
Technical Paper

Fuel Economy Performance of the Highly Efficient Fuel Economy Oils Using Chassis Dynamometer Test

1993-10-01
932690
Fuel economy is one of the most important performance features for modern engine oils. For some time now, fuel efficient engine oils (called Energy Conserving II or EC-II) have been available in the marketplace. However, the performance of EC-II oils is only 2.7% Equivalent Fuel Economy Improvement (EFEI) as measured by the ASTM Sequence VI Engine Test. To meet future industry needs, more fuel efficient engine oils are desirable. In order to achieve this, a study of highly fuel efficient engine oils was initiated. An initial target of 3.9% EFEI was selected and several candidate oils were evaluated, some of which exceeded this target. The oils were evaluated using a chassis dynamometer using the U. S. EPA mode. The test results may be summarized: 5W-30 Prototype Oil containing MoDTC showed between 1.6 and 2.6% better fuel economy than conventional 5W-30 and 10W-30 EC-II oils. There was an optimum viscosity for maximum fuel economy using the EPA testing mode.
Technical Paper

Development of a Lubricant for Retrofitting Automotive Air Conditioners for Use with HFC-134a

1994-03-01
940594
This paper presents a new refrigeration lubricant for use with the HFC-134a retrofit refrigerant in automotive air-conditioning systems originally designed to use the CFC-12 refrigerant, one of the regulated CFCs scheduled to be phased out. This new retrofit lubricant provides high lubricity and excellent performance characteristics as a result of adopting a newly developed PAG base oil with a block polymer structure and a new antiwear additive formulation. In retrofit systems, it assures sufficient durability for wobble-plate-type variable displacement compressors, which experience severe lubrication conditions.
Technical Paper

Effects of Lubricant Composition on Fuel Efficiency in Modern Engines

1995-02-01
951037
A bench engine test for evaluating the fuel efficiency of automotive crankcase oils using modern engines was developed. The fuel consumption was primarily proportional to the viscosity of the oils down to 5 mm2/s at operating temperatures, indicating that the use of low-viscosity oil was effective in improving fuel efficiency. This may be because the oil film would be formed easily, since sliding parts, such as valve train systems, in modern engines are finely finished. Organo molybdenum dithiocarbamates were effective in improving fuel efficiency at high temperature. A 2.7% improvement in fuel efficiency relative to conventional SAE 10W-30 oils was achieved by the combination of low-viscosity SAE 5W-20 oils and organo molybdenum dithiocarbamates under constant operating conditions with engine speed 1,500 rpm and torque 37.2 N•m.
Technical Paper

Development of Automatic Transmission Fluid for Slip-Controlled Lock-Up Clutch Systems

1995-10-01
952348
Slip-controlled lock-up clutch systems are very efficient and greatly improve fuel economy. On the other hand, these systems can cause unstable vibrations including those known as “shudder vibrations”. In this study, the authors made a theoretical analysis of these unstable vibrations to clarify the fundamental frictional properties of automatic transmission fluids (ATFs) required for slip-controlled lock-up clutch systems. Based on this analysis, we established lubricant technology having a sufficient anti-shudder property and high torque capacity. Further, we developed a new test apparatus to evaluate the anti-shudder durability for lubricant development.
Technical Paper

Development of Two-Dimensional Oil Film Thickness Distribution Measuring System

1995-10-01
952346
A newly developed fluorescent diagnostic system can measure the oil film thickness distribution through two-dimensional images with high sensitivity and quick response. This system consists of a filtered Xe-flash lamp, a filtered charge-coupled-device video camera, a personal-computer-based signal analyzer and lubricating oil with the fluorescent dye added. We have installed the system in a single cylinder research engine and measured the oil film thickness distribution around the piston under various operating conditions. One example of the results is that an oil spout from a gap in the first compression ring, which agrees with the measured oil consumption rate of the engine, was clearly observed at high engine speed.
Technical Paper

Experimental Study on Viscosity-Shear Characteristics of Lubricating Oils

1995-02-01
951029
The viscosity of automotive lubricants containing polymers decreases temporarily in the oil films of sliding parts with the increase in shear rate. This decrease sometimes causes surface damages such as bearing seizure and gear pitting. This paper describes the effect of polymers and base oils on viscosity under high shear rate conditions. The viscometer was newly developed to evaluate the viscosity at high shear rates. Shear rate can vary between 105 sec-1 and 106 sec-1. By using the viscometer, the effects of various factors such as polymer type, molecular weight, polar group and concentration on shear viscosity were investigated. The effects of polymer solubility and molecular weight distribution of base oils were also investigated.
Technical Paper

Lubricant Technology to Enhance the Durability of Low Friction Performance of Gasoline Engine Oils

1995-10-01
952533
This paper describes lubricant technology to enhance the durability of the low friction performance of gasoline engine oils which were formulated with molybdenum dithiodicarbamates (MoDTCs) as friction modifiers. This paper also describes an evaluation method which consists of three tests: (1) Our in-house rig test to simulate oil deterioration in an engine stand; (2) Quantitative analysis of MoDTC and ZnDTP in oils and; (3) A friction test (SRV). It was found that the low friction performance of fuel economy engine oils deteriorated primarily due to the consumption of MoDTC and ZnDTP. Calcium salicylates had better durability of low friction performance than calcium sulfonates. Furthermore, sulfurized compounds enhanced the durability. Based on these findings, an experimental oil was formulated.
Technical Paper

A Study on Engine Bearing Performance Focusing on the Viscosity-Pressure Characteristic of the Lubricant and Housing Stiffness

1996-05-01
961144
It is important to understand the influence of housing stiffness on bearing performance, particularly for the connecting rod bearings of automotive engines. It is known that the engine lubricant shows a piezoviscous characteristic whereby its viscosity changes under the influence of pressure. Engine bearings under a heavy load are apt to be influenced in this way. In this study, the effects of connecting rod stiffness and lubricant piezoviscosity on bearing performance were examined by elastohydrodynamic lubrication (EHL) analysis under conditions corresponding to the high-speed operation of an actual engine. The results indicated that under such heavy load conditions housing stiffness greatly affects friction loss because of lubricant piezoviscosity. It was also found that the piezoviscosity of the lubricant has a large effect on bearing performance, as does its viscosity under atmospheric pressure.
Technical Paper

Nissan Oil Econometer Permits the Measurement of Engine Oil Consumption

1981-06-01
810754
A technique has been developed which permits the determination of engine oil consumption on an instantaneous basis. The procedure uses the sulfur in the oil as a tracer. The concentration of sulfur compounds in the exhaust gas is determined using a Flame Photometric Detector (FPD). Special modifications of the FPD reduce the interference of other gases and improve the accuracy of the instrument. Although the unit is operationally simple, its abilities to measure continuously and respond quickly allow it to surpass conventional methods for measurement of oil consumption.
X