Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Experimental Method Extracting Dominant Acoustic Mode Shapes for Automotive Interior Acoustic Field Coupled with the Body Structure

2013-05-13
2013-01-1905
For a numerical model of vibro-acoustic coupling analysis, such as a vehicle noise and vibration, both structural and acoustical dynamic characteristics are necessary to replicate the physical phenomenon. The accuracy of the analysis is not enough for substituting a prototype phase with a digital phase in the product development phases. One of the reasons is the difficulty of addressing the interior acoustical characteristics due to the complexity of the acoustical transfer paths, which are a duct and a small hole of trim parts in a vehicle. Those complex features affect on the nodal locations and the body coupling surface of acoustic mode shapes. In order to improve the accuracy of the analysis, the physical mechanisms of those features need to be extracted from experimental testing.
Journal Article

Development of Hardware-In-the-Loop Simulation System for Steering Evaluation Using Multibody Kinematic Analysis

2014-04-01
2014-01-0086
The adoption of the electronic controlled steering systems with new technologies has been extended in recent years. They have interactions with other complex vehicle subsystems and it is a hard task for the vehicle developer to find the best solution from huge number of the combination of parameter settings with track tests. In order to improve the efficiency of the steering system development, the authors had developed a steering bench test method for steering system using a Hardware-In-the-Loop Simulation (HILS). In the steering HILS system, vehicle dynamics simulation and the tie rod axial force calculation are required at the same time in the real-time simulation environment. The accuracy of the tie rod axial force calculation is one of the key factors to reproduce the vehicle driving condition. But the calculation cannot be realized by a commercial software for the vehicle dynamics simulation.
Journal Article

Verification of Flag Usage Patterns by Static Analysis Techniques

2014-04-01
2014-01-0180
A flag is a global boolean variable used to achieve synchronization between various tasks of an embedded system. An application implementing flags performs actions or events based on the value of the flags. If flag variables are not implemented properly, certain synchronization related issues can arise which can lead to unexpected behavior or failure of the underlying system. In this paper, we present an automated verification technique to identify and verify flag usage patterns at an early stage of code development. We propose a two-step approach which consists of: a. identification of all potential flag variables and b. verification of flag usage patterns against predefined set of rules. The results of our experiment demonstrate that the proposed approach reduces the cost and complexity of the flag review process by almost 70%.
Technical Paper

Development of Ultra Low Viscosity 0W-8 Engine Oil

2020-04-14
2020-01-1425
Further fuel economy improvement of the internal combustion engine is indispensable for CO2 reduction in order to cope with serious global environmental problems. Although lowering the viscosity of engine oil is an effective way to improve fuel economy, it may reduce the wear resistance. Therefore, it is important to achieve both improved fuel economy and reliability. We have developed new 0W- 8 engine oil of ultra-low viscosity and achieved an improvement in fuel economy by 0.8% compared to the commercial 0W-16 engine oil. For this new oil, we reduced the friction coefficient under boundary lubrication regime by applying an oil film former and calcium borate detergent. The film former increased the oil film thickness without increasing the oil viscosity. The calcium borate detergent enhanced the friction reduction effect of molybdenum dithiocarbamate (MoDTC).
Journal Article

Experimental Demonstration of Smart Charging and Vehicle-to-Home Technologies for Plugin Electric Vehicles Coordinated with Home Energy Management Systems for Automated Demand Response

2016-04-05
2016-01-0160
In this paper, we consider smart charging and vehicle-to-home (V2H) technologies for plugin electric vehicles coordinated with home energy management systems (HEMS) for automated demand response. In this system, plugin electric vehicles automatically react to demand response events with or without HEMS’s coordination, while vehicles are charged and discharged (i.e., V2H) in appropriate time slots by taking into account demand response events, time-ofuse rate information, and users’ vehicle usage plan. We introduce three approaches on home energy management: centralized energy control, distributed energy control, and coordinated energy control. We implemented smart charging and V2H systems by employing two sets of standardized communication protocols: one using OpenADR 2.0b, SEP 2.0, and SAE standards and the other using OpenADR 2.0b, ECHONET Lite, and ISO/IEC 15118.
Journal Article

Improvement of Ride Comfort by Unsprung Negative Skyhook Damper Control Using In-Wheel Motors

2016-04-05
2016-01-1678
Vehicles equipped with in-wheel motors (IWMs) are capable of independent control of the driving force at each wheel. These vehicles can also control the motion of the sprung mass by driving force distribution using the suspension reaction force generated by IWM drive. However, one disadvantage of IWMs is an increase in unsprung mass. This has the effect of increasing vibrations in the 4 to 8 Hz range, which is reported to be uncomfortable to vehicle occupants, thereby reducing ride comfort. This research aimed to improve ride comfort through driving force control. Skyhook damper control is a typical ride comfort control method. Although this control is generally capable of reducing vibration around the resonance frequency of the sprung mass, it also has the trade-off effect of worsening vibration in the targeted mid-frequency 4 to 8 Hz range. This research aimed to improve mid-frequency vibration by identifying the cause of this adverse effect through the equations of motion.
Journal Article

Development of New Electronically Controlled Hydraulic Unit for Various Applications

2016-04-05
2016-01-1660
The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
Journal Article

Development of a Highly Anti-Corrosive Organic-Inorganic Hybrid Paint

2016-04-05
2016-01-0540
A highly anti-corrosive organic-inorganic hybrid paint for automotive steel parts has been developed. The inorganic component included in the paint is silicon dioxide (SiO2), which has the capability to passivate zinc. By application of the paint on a trivalent chromatetreated zinc-plated steel sheet or a trivalent chromate-treated zinc-nickel-plated steel sheet, high anti-corrosion protection can be provided to steel materials. Particularly in the case of application over a zinc-nickel-plated steel sheet, 0 mm corrosion depth after a cyclic corrosion test (CCT) of 450 cycles was demonstrated.
Journal Article

Technical Development of Electro Magnetic Compatibility for Plug-in Hybrid Vehicle / Electric Vehicle Using Wireless Power Transfer System

2016-04-05
2016-01-1161
In 2007, researchers at the Massachusetts Institute of Technology successfully completed a Wireless Power Transfer (WPT) experiment. Ever since, interest in WPT has been growing. At Toyota, we have been developing the underlying technology of a WPT system. Simultaneously we have been working with regulatory committees to create a standard for WPT. In particular, there are concerns that WPT’s radiated emissions could cause harm to humans and the neighboring electronic equipment. There are many challenges that need to be overcome, but a key concern is understanding WPT’s electromagnetic compatibility (EMI: Electro-Magnetic Interference and EMF: Electro-Magnetic Field). In this paper, we show the technical issues, the evaluation method, and the development status of EMI and EMF on PHVs/EVs when using WPT. For Electromagnetic interference (EMI) performance, we investigated both an open area test site and an electromagnetic anechoic chamber as evaluation environments.
Journal Article

Pedestrian/Bicyclist Limb Motion Analysis from 110-Car TASI Video Data for Autonomous Emergency Braking Testing Surrogate Development

2016-04-05
2016-01-1456
Many vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions.
Journal Article

Development of Paint Booth: “New Paint Mist Collection Method”

2016-04-05
2016-01-1258
1 Inside a paint booth to spray paint on vehicle bodies, bumpers, and other parts (hereinafter referred to as “works”), air whose temperature and humidity are controlled by air-conditioner is supplied by blower fans through filters. Dust-eliminated and regulated air flow is sent downward from top to bottom (hereinafter referred to as “downflow”) in the painting booth. Conventionally, paint which does not adhere to work in spraying (hereinafter referred to as “paint mist”) is collected while flowing at a high speed through a slit opening called venturi scrubber in a mixture of air and water. However, this mist collecting system using venturi scrubber requires a large space with a large amount of pressure loss while consuming substantial energy. By radically changing the mist collecting principle, we developed a new compact system with less pressure loss aiming to reduce energy consumption by 40% in a half-size booth.
Journal Article

Development of Fracture Model for Laser Screw Welding

2016-04-05
2016-01-1344
This paper describes the development of a fracture finite element (FE) model for laser screw welding (LSW) and validation of the model with experimental results. LSW was developed and introduced to production vehicles by Toyota Motor Corporation in 2013. LSW offers superb advantages such as increased productivity and short pitch welding. Although the authors had previously developed fracture FE models for conventional resistance spot welding (RSW), a fracture model for LSW has not been developed. To develop this fracture model, many comprehensive experiments were conducted. The results revealed that LSW had twice as many variations in fracture modes compared to RSW. Moreover, fracture mode bifurcations were also found to result from differences in clearance between welded plates. In order to analyze LSW fracture phenomena, detailed FE models using fine hexahedral elements were developed.
Journal Article

Development of Chemical Process for Recovering High-quality Rare-earth Oxides from HV Motor Magnets

2017-03-28
2017-01-1278
In the automobile industry, interest in the prevention of global warming has always been high. The development of eco cars (HV, EV etc.), aimed at reducing CO2 emissions during operation, has been progressing. In the announcement of its "Toyota Environmental Challenge 2050", Toyota declared its commitment to creating a future in which people, cars, and nature coexist in harmony. In this declaration, Toyota committed to reducing CO2 emissions not only during operation but also over the entire life cycle of vehicles, and to using resources effectively based on a 4 R’s approach (refuse, reduce, reuse, and recycle). Although eco cars decrease CO2 emissions during operation, most of them increase CO2 emissions during manufacturing. For example, the rare-earths (Nd, Dy etc.) used in the magnets of driving motors are extracted through processes that produce a significant amount of CO2 emissions.
Journal Article

Dissimilar Joining of Aluminum Alloy and Steel by Resistance Spot Welding

2009-04-20
2009-01-0034
This study concerns a dissimilar materials joining technique for aluminum (Al) alloys and steel for the purpose of reducing the vehicle body weight. The tough oxide layer on the Al alloy surface and the ability to control the Fe-Al intermetallic compound (IMC) thickness are issues that have so far complicated the joining of Al alloys and steel. Removing the oxide layer has required a high heat input, resulting in the formation of a thick Fe-Al IMC layer at the joint interface, making it impossible to obtain satisfactory joint strength. To avoid that problem, we propose a unique joining concept that removes the oxide layer at low temperature by using the eutectic reaction between Al in the Al alloy and zinc (Zn) in the coating on galvanized steel (GI) and galvannealed steel (GA). This makes it possible to form a thin, uniform Fe-Al IMC layer at the joint interface. Welded joints of dissimilar materials require anticorrosion performance against electrochemical corrosion.
Journal Article

A Novel Multiple DC-Inputs Direct Electric-Power Converter

2009-04-20
2009-01-0293
A new multiple dc-inputs direct electric-power converter (D-EPC) has been developed. It is placed between multiple dc power sources and an ac motor, eliminating the need for a dc/dc converter generally used in conventional converter/inverter systems. The D-PEC can improve the efficiency of the motor drive system with a more compact size. Its power distribution control is carried out by allotting voltage ratios to each of two different dc power sources on a time average basis. A new pulse-width-modulation (PWM) generation technique to drive switching devices in the D-EPC has also been developed. Tests have verified that the three-phase ac motor can be operated by controlling the power distribution between the two power sources.
Journal Article

Novel Microsurface Machining Techniques for Improving the Traction Coefficient

2008-04-14
2008-01-0414
This study examined methods of machining a microsurface texture on the surface of the rolling elements of a toroidal continuously variable transmission (CVT) for improving the traction coefficient. The microsurface texture of the toroidal surfaces consists of tiny circumferential grooves (referred to here as micro grooves) and a mirror-like surface finish similar to the rolling surface of bearings. Hard turning with a cubic boron nitride (cBN) cutting tool, grinding with a cBN wheel and micro forming were applied to machine the micro grooves. The results made clear the practical potential of each method. A micro forming device was also developed for use in actual production. A mirror-like surface finish and micro crowning of the convex portions of the microsurface texture were simultaneously executed by superfinishing them with a fine-grained elastic superfinishing stone.
Journal Article

Development of Test Method to Evaluate Aggressiveness Focusing on Stiffness and Interaction: Part 2

2011-04-12
2011-01-0547
Test methods to evaluate vehicle compatibility are being studied worldwide. Compatibility performance is central in securing mutual protection in collisions between large and small vehicles. To consider compatibility performance, good structural interaction and stiffness matching are important. A test method using a novel moving deformable barrier (MDB) was developed to evaluate compatibility performance that includes consideration of both structural interaction and stiffness matching. This new barrier has the following features to represent an offset vehicle-to-vehicle collision with a compact car. The barrier width is divided at the lower rail position of the compact car, and the layer that simulates the characteristics of vehicle sections toward the interior is harder than the outward layer. This varying stiffness of the MDB helps simulate the horizontal interaction performance that occurs in real-world crashes.
Journal Article

Tire and Road Input Modeling for Low-Frequency Road Noise Prediction

2011-05-17
2011-01-1690
This paper presents a modeling method for prediction of low-frequency road noise in a steady-state condition where rotating tires are excited by actual road profile undulation input. The proposed finite element (FE) tire model contains not only additional geometric stiffness related to inflation pressure and axle load but also Coriolis force and centrifugal force effects caused by tire rotation for precise road noise simulation. Road inputs act on the nodes of each rib in the contact patch of the stationary tire model and move along them at the driving velocity. The nodes are enforced to displace in frequency domain based on the measured road profile. Tire model accuracy was confirmed by the spindle forces on the rotating chassis drum up to 100Hz where Coriolis force effect should be considered. Full vehicle simulation results showed good agreement with the vibration measurement of front/rear suspension at two driving velocities.
Journal Article

Development of a Parallel Hybrid System for RWD Vehicles

2011-04-12
2011-01-0884
In December 2006, Nissan announced its Nissan Green Program 2010 (NGP 2010), a mid-term environmental action plan that includes initiatives to reduce vehicle emissions. In line with this plan, the company intends to introduce a new and original hybrid system in fiscal year 2010. Specifically, this system-called the “Infiniti Direct Response Hybrid”-is a one-motor, two-clutch parallel hybrid system that eliminates the need for a torque converter. It will be featured in the 2012 Infiniti M35 Hybrid and provides the following advantages. 1 Significant improvement in fuel economy even in Highway driving 2 Better response and a more direct feeling 3 Lightweight and low cost This one-motor, two-clutch system without torque converter possesses a simple but highly capable architecture that is new to the passenger vehicle segment.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
X