Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Video

Dynamometer Evaluation of Five Electric Vehicles Designed for Urban Deliver Route Services ?

2011-11-21
With nearly 220,000 vehicles, the United States Postal Service (USPS) has the largest non-military vehicle fleet in the world. This fleet requires over a billion dollars of fuel annually, and this figure does not include contracted vehicles. As a part of the business strategy, the USPS has embraced and invested in alternative fueled vehicles since 1899, when the first recorded use of an electric vehicle for USPS service was performed as a technology evaluation in Cleveland, OH. As part of a technology evaluation of advanced vehicle systems, the USPS has partnered with the DOE?s Vehicle Technology Program (VTP) to benchmark and quantify the capabilities of five vehicles in meeting specific Urban Route Delivery requirements, both with dynamometer and in-service testing. The all electric vehicle conversions have been developed by established electric vehicle systems manufacturers representing various perspectives on meeting the vehicle specific operation objectives.
Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Journal Article

Response Surface Energy Modeling of an Electric Vehicle over a Reduced Composite Drive Cycle

2014-04-01
2014-01-0818
Response surface methodology (RSM) techniques were applied to develop a predictive model of electric vehicle (EV) energy consumption over the Environmental Protection Agency's (EPA) standardized drive cycles. The model is based on measurements from a synthetic composite drive cycle. The synthetic drive cycle is a minimized statistical composite of the standardized urban (UDDS), highway (HWFET), and US06 cycles. The composite synthetic drive cycle is 20 minutes in length thereby reducing testing time of the three standard EPA cycles by over 55%. Vehicle speed and acceleration were used as model inputs for a third order least squared regression model predicting vehicle battery power output as a function of the drive cycle. The approach reduced three cycles and 46 minutes of drive time to a single test of 20 minutes.
Journal Article

Electric Drive Transient Behavior Modeling: Comparison of Steady State Map Based Offline Simulation and Hardware-in-the-Loop Testing

2017-03-28
2017-01-1605
Electric drives, whether in battery electric vehicles (BEVs) or various other applications, are an important part of modern transportation. Traditionally, physics-based models based on steady-state mapping of electric drives have been used to evaluate their behavior under transient conditions. Hardware-in-the-Loop (HIL) testing seeks to provide a more accurate representation of a component’s behavior under transient load conditions that are more representative of real world conditions it will operate under, without requiring a full vehicle installation. Oak Ridge National Laboratory (ORNL) developed such a HIL test platform capable of subjecting electric drives to both conventional steady-state test procedures as well as transient experiments such as vehicle drive cycles.
Journal Article

PHEV Cold Start Emissions Management

2013-04-08
2013-01-0358
Plug-in hybrid electric vehicles (PHEV) operate predominantly as electric vehicles (EV) with intermittent assist from the engine. As a consequence, the engine can be subjected to multiple cold start events. These cold start events have a significant impact on tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current conventional vehicles, the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts. ORNL, in collaboration with the University of Tennessee, developed an Engine-In-the-Loop (EIL) test platform to investigate cold start emissions on a 2.0l Gasoline Turbocharged Direct Injection (GTDI) Ecotec engine coupled to a virtual series hybrid electric vehicle.
Technical Paper

A Soft-Switched DC/DC Converter for Fuel Cell Vehicle Applications*

2002-06-03
2002-01-1903
Fuel cell-powered electric vehicles (FCPEV) require an energy storage device to start up the fuel cells and to store the energy captured during regenerative braking. Low-voltage (12 V) batteries are preferred as the storage device to maintain compatibility with the majority of today's automobile loads. A dc/dc converter is therefore needed to interface the low-voltage batteries with the fuel cell-powered higher-voltage dc bus system (255 V ∼ 425 V), transferring energy in either direction as required. This paper presents a soft-switched, isolated bi-directional dc/dc converter developed at Oak Ridge National Laboratory for FCPEV applications. The converter employs dual half-bridges interconnected with an isolation transformer to minimize the number of switching devices and their associated gate drive requirements. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS).
Technical Paper

Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

2017-03-28
2017-01-0183
It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
Technical Paper

The Electric Drive Advanced Battery (EDAB) Project: Development and Utilization of an On-Road Energy Storage System Testbed

2013-04-08
2013-01-1533
As energy storage system (ESS) technology advances, vehicle testing in both laboratory and on-road settings is needed to characterize the performance of state-of-the-art technology and also identify areas for future improvement. The Idaho National Laboratory (INL), through its support of the U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA), is collaborating with ECOtality North America and Oak Ridge National Laboratory (ORNL) to conduct on-road testing of advanced ESSs for the Electric Drive Advanced Battery (EDAB) project. The project objective is to test a variety of advanced ESSs that are close to commercialization in a controlled environment that simulates usage within the intended application with the variability of on-road driving to quantify the ESS capabilities, limitations, and performance fade over cycling of the ESS.
Technical Paper

Assessing Grid Impact of Battery Electric Vehicle Charging Demand Using GPS-Based Longitudinal Travel Survey Data

2014-04-01
2014-01-0343
This paper utilizes GPS tracked multiday travel activities to estimate the temporal distribution of electricity loads and assess battery electric vehicle (BEV) grid impacts at a significant market penetration level. The BEV load and non-PEV load vary by time of the day and day of the week. We consider two charging preferences: home priority assumes BEV drivers prefer charging at home and would not charge at public charging stations unless the state of charge (SOC) of the battery is not sufficient to cover the way back to home; and charging priority does not require drivers to defer charging to home and assumes drivers will utilize the first available charging opportunity. Both home and charging priority scenarios show an evening peak demand. Charging priority scenario also shows a morning peak on weekdays, possibly due to workplace charging.
Technical Paper

Thermal Storage System for Electric Vehicle Cabin Heating - Component and System Analysis

2016-04-05
2016-01-0244
Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs).
Technical Paper

Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

2016-04-05
2016-01-0248
Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating.
Technical Paper

Dynamic Wireless Power Transfer: Potential Impact on Plug-in Electric Vehicle Adoption

2014-04-01
2014-01-1965
This study attempts to establish a quantitative linkage between deployment of dynamic wireless power transfer (DWPT) and the market adoption of plug-in electric vehicles (PEV). This linkage can be useful for analyzing the societal benefits of DWPT and justifying investments in its research, development, demonstration and deployment. Spatial relationships between charging opportunity and DWPT availability are estimated for four metropolitan areas. The consumer value of DWPT is formulated as a function of key DWPT deployment parameters and then integrated into an existing validated consumer choice model, where sales of PEVs are endogenous. Results indicate significant impacts on PEV sales of DWPT deployment, even only at 0.5% of road length by 2050. Significant impact heterogeneity is observed.
Technical Paper

Quantifying the Sensitive Parameters of the New Energy Vehicles in China

2023-04-11
2023-01-0883
To achieve carbon neutrality by 2060, the Chinese government has put effort into decarbonizing the transportation sector. Consequently, China elaborated a new energy vehicle strategy promoting the production of electric vehicles and expanding into hydrogen (H2) vehicle technologies including fuel cell electric vehicles and H2 internal combustion engine vehicles. The Transportation Energy Analysis Model (TEAM) projects the market penetration as well as energy demand and greenhouse gas emissions in China up to 2050. By integrating the Monte Carlo simulation, this study tests the robustness of TEAM and investigates the key parameters that will shape passenger vehicle sales and emissions in the future. The results show that fuel cell cost, H2 price, and battery cost are the most sensitive parameters for H2 vehicle technologies.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Journal Article

Achieving Diesel Powertrain Ownership Parity in Battery Electric Heavy Duty Commercial Vehicles Using a Rapid Recurrent Recharging Architecture

2022-03-29
2022-01-0751
Battery electric vehicles (BEV) in heavy duty (HD) commercial freight transport face challenging technoeconomic barriers to adoption. Specifically, beyond safety and compliance, fleet and operational logistics require both high up-time and parity with diesel system productivity/Total Cost of Ownership (TCO) to enable strong adoption of electrified powertrains. At present, relatively high energy storage prices coupled with the increased weight of BEV systems limit the practicality of HD commercial freight transport to shorter range applications, where smaller batteries will suffice for the mission energy requirements (single operational shift). This paper presents an approach to extend the feasibility of BEV HD trucking for a broad range of applications.
Book

Impacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles (FCEV)

2016-02-19
Alternative propulsion technologies are becoming increasingly important with the rise of stricter regulations for vehicle efficiency, emission regulations, and concerns over the sustainability of crude oil supplies. The fuel cell is a critical component of alternative propulsion systems, and as such has many aspects to consider in its design. Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen, offer the promise of zero emissions with excellent driving range of 300-400 miles, and fast refueling times; two major advantages over battery electric vehicles (BEVs). FCEVs face several remaining major challenges in order to achieve widespread and rapid commercialization. Many of the challenges, especially those from an FCEV system and subsystem cost and performance perspective are addressed in this book.
Technical Paper

Assessing Powertrain Technology Performance and Cost Signposts for Electrified Heavy Duty Commercial Freight Vehicles

2024-04-09
2024-01-2032
Adoption of fuel cell electric vehicles (FCEV) or battery electric vehicles (BEV) in heavy-duty (HD) commercial freight transportation is hampered by difficult technoeconomic obstacles. To enable widespread deployment of electrified powertrains, fleet and operational logistics need high uptime and parity with diesel system productivity/total cost of ownership (TCO), while meeting safety compliance. Due to a mix of comparatively high powerplant and energy storage costs, high energy costs (more so for FCEV), greater weight (more so for BEV), slow refueling / recharging durations, and limited supporting infrastructure, FCEV and BEV powertrains have not seen significant uptake in the HD freight transport market. The use of dynamic wireless power transfer (DWPT) systems, consisting of inductive electrical coils on the vehicle and power source transmitting coils embedded in the roadways, may address several of these challenges.
Technical Paper

Consumer-Oriented Energy Use and Range Metrics for Battery Electric Vehicles

2024-04-09
2024-01-2596
The present study was motivated by a need to expand information for consumers offered through the FuelEconomy.Gov website. To that end, a power-based modeling approach has been used to examine the effect of steady-speed driving on estimated range for model year 2020 – 2023 battery electric vehicles (BEVs). This approach allowed rapid study of a broader range of BEV models than could be accomplished through vehicle tests. Publicly accessible certification test results and other data were used to perform a regression between cycle-average tractive power requirements and the resulting electrical power. This regression enabled estimation of electric power and energy use over a range of steady highway speeds. These analyses in turn allowed projection of vehicle range at differing speeds. The projections agree within 6% with available 65 MPH manufacturer test data.
Technical Paper

Exploring Class 8 Long-Haul Truck Electrification: Key Technology Evaluation and Potential Challenges

2024-04-09
2024-01-2812
The phenomena of global warming and climate change are encouraging more and more countries, local communities, and companies to establish carbon neutrality targets, which has very significant implications for the US trucking industry. Truck electrification helps fleets to achieve zero tailpipe emissions and macro-scale decarbonization while allowing continued business growth in response to the rapid expansion of e-commerce and shipping related to increased globalization. This paper presents an analysis of Class 8 long-haul truck electrification using a commercial vehicle electrification evaluation tool and Fleet DNA drive data. The study provides new insight into the impacts of streamlined chassis, battery energy density, and superfast charging on battery capacity needs as well as implications for payload, energy consumption, and greenhouse gas emissions for electric long-haul trucks. The study also identifies a pathway for achieving optimal long-haul truck electrification.
X