Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Video

Dynamometer Evaluation of Five Electric Vehicles Designed for Urban Deliver Route Services ?

2011-11-21
With nearly 220,000 vehicles, the United States Postal Service (USPS) has the largest non-military vehicle fleet in the world. This fleet requires over a billion dollars of fuel annually, and this figure does not include contracted vehicles. As a part of the business strategy, the USPS has embraced and invested in alternative fueled vehicles since 1899, when the first recorded use of an electric vehicle for USPS service was performed as a technology evaluation in Cleveland, OH. As part of a technology evaluation of advanced vehicle systems, the USPS has partnered with the DOE?s Vehicle Technology Program (VTP) to benchmark and quantify the capabilities of five vehicles in meeting specific Urban Route Delivery requirements, both with dynamometer and in-service testing. The all electric vehicle conversions have been developed by established electric vehicle systems manufacturers representing various perspectives on meeting the vehicle specific operation objectives.
Journal Article

Development of Integrated Modular Motor Drive for Traction Applications

2011-04-12
2011-01-0344
This paper introduces a promising approach for developing an integrated traction motor drive based on the Integrated Modular Motor Drive (IMMD) concept. The IMMD concept strives to meet aggressive power density and performance targets by modularizing both the machine and power electronics and then integrating them into a single combined machine-plus-drive structure. Physical integration of the power electronics inside the machine makes it highly desirable to increase the power electronics operating temperature including higher power semiconductor junction temperatures and improved device packaging. Recent progress towards implementing the IMMD concept in an integrated traction motor drive is summarized in this paper. Several candidate permanent magnet (PM) machine configurations with different numbers of phases between 3 and 6 are analyzed to compare their performance characteristics and key application features.
Journal Article

Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

2012-04-16
2012-01-0817
To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle.
Technical Paper

“Just-in-Time” Battery Charge Depletion Control for PHEVs and E-REVs for Maximum Battery Life

2009-04-20
2009-01-1384
Conventional methods of vehicle operation for Plug-in Hybrid Vehicles first discharge the battery to a minimum State of Charge (SOC) before switching to charge sustaining operation. This is very demanding on the battery, maximizing the number of trips ending with a depleted battery and maximizing the distance driven on a depleted battery over the vehicle's life. Several methods have been proposed to reduce the number of trips ending with a deeply discharged battery and also eliminate the need for extended driving on a depleted battery. An optimum SOC can be maintained for long battery life before discharging the battery so that the vehicle reaches an electric plug-in destination just as the battery reaches the minimum operating SOC. These “Just-in-Time” methods provide maximum effective battery life while getting virtually the same electricity from the grid.
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

2002-06-03
2002-01-1954
The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.
Technical Paper

A Soft-Switched DC/DC Converter for Fuel Cell Vehicle Applications*

2002-06-03
2002-01-1903
Fuel cell-powered electric vehicles (FCPEV) require an energy storage device to start up the fuel cells and to store the energy captured during regenerative braking. Low-voltage (12 V) batteries are preferred as the storage device to maintain compatibility with the majority of today's automobile loads. A dc/dc converter is therefore needed to interface the low-voltage batteries with the fuel cell-powered higher-voltage dc bus system (255 V ∼ 425 V), transferring energy in either direction as required. This paper presents a soft-switched, isolated bi-directional dc/dc converter developed at Oak Ridge National Laboratory for FCPEV applications. The converter employs dual half-bridges interconnected with an isolation transformer to minimize the number of switching devices and their associated gate drive requirements. Snubber capacitors including the parasitic capacitance of the switching devices and the transformer leakage inductance are utilized to achieve zero-voltage switching (ZVS).
Technical Paper

Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

2017-03-28
2017-01-0183
It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
Technical Paper

The Electric Drive Advanced Battery (EDAB) Project: Development and Utilization of an On-Road Energy Storage System Testbed

2013-04-08
2013-01-1533
As energy storage system (ESS) technology advances, vehicle testing in both laboratory and on-road settings is needed to characterize the performance of state-of-the-art technology and also identify areas for future improvement. The Idaho National Laboratory (INL), through its support of the U.S. Department of Energy's (DOE) Advanced Vehicle Testing Activity (AVTA), is collaborating with ECOtality North America and Oak Ridge National Laboratory (ORNL) to conduct on-road testing of advanced ESSs for the Electric Drive Advanced Battery (EDAB) project. The project objective is to test a variety of advanced ESSs that are close to commercialization in a controlled environment that simulates usage within the intended application with the variability of on-road driving to quantify the ESS capabilities, limitations, and performance fade over cycling of the ESS.
Technical Paper

Assessing Grid Impact of Battery Electric Vehicle Charging Demand Using GPS-Based Longitudinal Travel Survey Data

2014-04-01
2014-01-0343
This paper utilizes GPS tracked multiday travel activities to estimate the temporal distribution of electricity loads and assess battery electric vehicle (BEV) grid impacts at a significant market penetration level. The BEV load and non-PEV load vary by time of the day and day of the week. We consider two charging preferences: home priority assumes BEV drivers prefer charging at home and would not charge at public charging stations unless the state of charge (SOC) of the battery is not sufficient to cover the way back to home; and charging priority does not require drivers to defer charging to home and assumes drivers will utilize the first available charging opportunity. Both home and charging priority scenarios show an evening peak demand. Charging priority scenario also shows a morning peak on weekdays, possibly due to workplace charging.
Technical Paper

Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV

2000-04-02
2000-01-1556
A detailed component performance, ratings, and cost study was conducted on series and parallel hybrid electric vehicle (HEV) configurations for several battery pack and main electric traction motor voltages while meeting stringent Partnership for a New Generation of Vehicles (PNGV) power delivery requirements. A computer simulation calculated maximum current and voltage for each component as well as power and fuel consumption. These values defined the peak power ratings for each HEV drive system's electric components: batteries, battery cables, boost converter, generator, rectifier, motor, and inverter. To identify a superior configuration or voltage level, life cycle costs were calculated based on the components required to execute simulated drive schedules. These life cycle costs include the initial manufacturing cost of components, fuel cost, and battery replacement cost over the vehicle life.
Technical Paper

Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

2016-04-05
2016-01-0248
Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating.
Technical Paper

Highway Fuel Economy Testing of an RCCI Series Hybrid Vehicle

2015-04-14
2015-01-0837
In the current work, a series-hybrid vehicle has been constructed that utilizes a dual-fuel, Reactivity Controlled Compression Ignition (RCCI) engine. The vehicle is a 2009 Saturn Vue chassis and a 1.9L turbo-diesel engine converted to operate with low temperature RCCI combustion. The engine is coupled to a 90 kW AC motor, acting as an electrical generator to charge a 14.1 kW-hr lithium-ion traction battery pack, which powers the rear wheels by a 75 kW drive motor. Full vehicle testing was conducted on chassis dynamometers at the Vehicle Emissions Research Laboratory at Ford Motor Company and at the Vehicle Research Laboratory at Oak Ridge National Laboratory. For this work, the US Environmental Protection Agency Highway Fuel Economy Test was performed using commercially available gasoline and ultra-low sulfur diesel. Fuel economy and emissions data were recorded over the specified test cycle and calculated based on the fuel properties and the high-voltage battery energy usage.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Journal Article

Achieving Diesel Powertrain Ownership Parity in Battery Electric Heavy Duty Commercial Vehicles Using a Rapid Recurrent Recharging Architecture

2022-03-29
2022-01-0751
Battery electric vehicles (BEV) in heavy duty (HD) commercial freight transport face challenging technoeconomic barriers to adoption. Specifically, beyond safety and compliance, fleet and operational logistics require both high up-time and parity with diesel system productivity/Total Cost of Ownership (TCO) to enable strong adoption of electrified powertrains. At present, relatively high energy storage prices coupled with the increased weight of BEV systems limit the practicality of HD commercial freight transport to shorter range applications, where smaller batteries will suffice for the mission energy requirements (single operational shift). This paper presents an approach to extend the feasibility of BEV HD trucking for a broad range of applications.
Book

Progress in Modeling and Simulation of Batteries

2016-06-15
Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles.
Book

Impacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles (FCEV)

2016-02-19
Alternative propulsion technologies are becoming increasingly important with the rise of stricter regulations for vehicle efficiency, emission regulations, and concerns over the sustainability of crude oil supplies. The fuel cell is a critical component of alternative propulsion systems, and as such has many aspects to consider in its design. Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen, offer the promise of zero emissions with excellent driving range of 300-400 miles, and fast refueling times; two major advantages over battery electric vehicles (BEVs). FCEVs face several remaining major challenges in order to achieve widespread and rapid commercialization. Many of the challenges, especially those from an FCEV system and subsystem cost and performance perspective are addressed in this book.
Technical Paper

Exploring Class 8 Long-Haul Truck Electrification: Key Technology Evaluation and Potential Challenges

2024-04-09
2024-01-2812
The phenomena of global warming and climate change are encouraging more and more countries, local communities, and companies to establish carbon neutrality targets, which has very significant implications for the US trucking industry. Truck electrification helps fleets to achieve zero tailpipe emissions and macro-scale decarbonization while allowing continued business growth in response to the rapid expansion of e-commerce and shipping related to increased globalization. This paper presents an analysis of Class 8 long-haul truck electrification using a commercial vehicle electrification evaluation tool and Fleet DNA drive data. The study provides new insight into the impacts of streamlined chassis, battery energy density, and superfast charging on battery capacity needs as well as implications for payload, energy consumption, and greenhouse gas emissions for electric long-haul trucks. The study also identifies a pathway for achieving optimal long-haul truck electrification.
Journal Article

Designing Dynamic Wireless Power Transfer Corridors for Heavy Duty Battery Electric Commercial Freight Vehicles

2023-04-11
2023-01-0703
The use of wireless power transfer systems, consisting of inductive electrical coils on the vehicle and the power source may be designed for dynamic operations where the vehicle will absorb energy at highway speeds from transmitting coils in the road. This has the potential to reduce the onboard energy storage requirements for vehicles while enabling significantly longer missions. This paper presents an approach to architecting a dynamic wireless power transfer corridor for heavy duty battery electric commercial freight vehicles. By considering the interplay of roadway power capacity, roadway and vehicle coil coverage, seasonal road traffic loading, freight vehicle class and weight, vehicle mobility energy requirements, on-board battery chemistry, non-electrified roadway vehicle range requirements, grid capacity, substation locations, and variations in electricity costs, we minimize the vehicle TCO by architecting the electrified roadway and the vehicle battery simultaneously.
X