Refine Your Search

Topic

Author

Search Results

Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Journal Article

Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

2015-04-14
2015-01-0855
The focus of the present study was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition.
Journal Article

Forecasting Warranty Cost for Vehicle Handling Using the Mahalanobis-Taguchi System

2008-04-14
2008-01-1428
Consumers judge quality and performance at the system level, but important cost-effective decisions at the sub-system or component level must be made by the producer in order to economically satisfy consumer's needs by providing affordable and high quality products. Mahalanobis distance (MD) is a distance measure that is based on correlations between variables and the different patterns that can be identified and analyzed with respect to a reference population. MD is a discriminant analysis tool, which will be used to predict warranty cost using multiple characteristics at all levels of a hardware set. The Mahalanobis-Taguchi System is a diagnosis and forecasting method for multivariate data. The Mahalanobis-Taguchi System is of interest because of its reported accuracy in forecasting small, correlated data sets. This is the type of data that is encountered with consumer vehicle ratings.
Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Technical Paper

Residual Stress Analysis for Additive Manufactured Large Automobile Parts by Using Neutron and Simulation

2020-04-14
2020-01-1071
Metal additive manufacturing has high potential to produce automobile parts, due to its shape flexibility and unique material properties. On the other hand, residual stress which is generated by rapid solidification causes deformation, cracks and failure under building process. To avoid these problems, understanding of internal residual stress distribution is necessary. However, from the view point of measureable area, conventional residual stress measurement methods such as strain gages and X-ray diffractometers, is limited to only the surface layer of the parts. Therefore, neutron which has a high penetration capability was chosen as a probe to measure internal residual stress in this research. By using time of flight neutron diffraction facility VULCAN at Oak Ridge National Laboratory, residual stress for mono-cylinder head, which were made of aluminum alloy, was measured non-distractively. From the result of precise measurement, interior stress distribution was visualized.
Journal Article

High-Resolution X-Ray and Neutron Computed Tomography of an Engine Combustion Network Spray G Gasoline Injector

2017-03-28
2017-01-0824
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. The pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offs in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution.
Technical Paper

Characterization of In-Cylinder Techniques for Thermal Management of Diesel Aftertreatment

2007-10-29
2007-01-3997
One challenge in meeting emission regulations with catalytic aftertreatment systems is maintaining the proper catalyst temperatures that enable the catalytic devices to perform the emissions reduction. In this study, in-cylinder techniques are used to actively control the temperature of a catalyzed diesel particulate filter (DPF) in order to raise the DPF temperature to induce particulate oxidation. The performance of four strategies is compared for two different starting DPF temperatures (150°C and 300°C) on a 4-cylinder 1.7-liter diesel engine. The four strategies include: (1) addition of extra fuel injection early in the combustion cycle for all four cylinders, (2) addition of extra fuel injection late in the combustion cycle for all four cylinders, (3) operating one-cylinder with extra fuel injection early in the combustion cycle, and (4) operating one-cylinder with extra fuel injection late in the combustion cycle.
Technical Paper

In Situ Measurement of Fuel Absorption into the Cylinder Wall Oil Film During Engine Cold Start

1998-02-01
981054
The absorption of unburned fuel into the engine cylinder wall oil film has been identified as a source of hydrocarbon (HC) emissions from spark-ignited (SI)engines. While significant work has been done under steady-state operating conditions to quantify the contribution of this mechanism to overall unburned hydrocarbon emissions, little work has focused on cold starting conditions and in situ measurement of the fuel / oil film interaction. The work reported here shows how laser-induced fluorescence (LIF) spectroscopy can be used to make in situ measurements of the absorption of fuel into the cylinder wall oil film of a single cylinder engine. Measurements were made at two points in the engine cycle under cold start conditions. Results indicate that fuel concentration in the oil film reached a maximum of fifty percent (50%) during cold start operation, though fuel was present in the oil film throughout the engine cycle.
Technical Paper

Predictive Model and Methodology for Heat Treatment Distortion

1998-08-11
982112
The heat treatment of steel parts is an essential step in the manufacturing of high-performance components for a variety of commercial and military products. Distortion in the size and shape of parts resulting from the heat treatment process is a pervasive manufacturing problem that causes higher finishing costs, excessive scrap and rework, long delivery times, and negative environmental impact. To date, techniques that have been developed to reduce or eliminate heat treatment distortion are largely based on experience and have been limited to trial and error. This presentation describes the philosophy and results of an ongoing collaborative project to develop a methodology and computer simulation capability to predict ferrous alloy component response (distortion, residual stress, and microstructure) to industrial heat treatment processes for automotive, truck, bearing, and aerospace applications.
Technical Paper

Metal Compression Forming - A New Process for Structural Aluminum Alloy Castings

1998-08-11
982107
Metal Compression Forming (MCF) is a variant of the squeeze casting process, in which molten metal is allowed to solidify under pressure in order to close porosity and form a sound part. However, the MCF process applies pressure on the entire mold face, thereby directing pressure on all regions of the casting and producing a uniformly sound part. The process is capable of producing parts with properties close to those of forgings, while retaining the near net shape, complexity in geometry, and relatively low cost of the casting process. The paper describes the casting process development involved in the production of an aluminum A357 alloy motor mount bracket, including the use of a filling and solidification model to design the gating and determine process parameters. Tensile properties of the component are presented and correlated with those of forged components.
Technical Paper

An Optical Backscatter Sensor for Particulate Matter Measurement

2009-04-20
2009-01-0687
An optical-based sensor for detecting particulate matter (PM) in diesel engine exhaust has been demonstrated. The position of the sensor during the experiments was the exhaust manifold prior to the turbocharger. The sensor is constructed of fiber optics which transmit 532-nm laser light into the exhaust pipe and collect backscattered light in a 180° geometry. Due to the optical nature of the probe, PM sensing can occur at high temporal rates. Experiments conducted by changing the fuel injection properties of one cylinder of a four cylinder engine demonstrated that the sensor can resolve cycle dependent events. The feasibility of the probe for examining PM emissions in the exhaust manifold will be discussed.
Technical Paper

Influence of the Combustion Energy Release on Surface Accelerations of an HCCI Engine

2009-11-02
2009-01-2741
Large cyclic variability along with increased combustion noise present in low temperature combustion (LTC) modes of internal combustion engines has driven the need for fast response, robust sensors for diagnostics and feedback control. Accelerometers have been shown as a possible technology for diagnostics and feedback control of advanced LTC operation in internal combustion engines. To make better use of this technology, an improved understanding is necessary of the effect of energy release from the combustion process on engine surface vibrations. This study explores the surface acceleration response for a single-cylinder engine operating with homogeneous charge compression ignition (HCCI) combustion. Preliminary investigation of the engine surface accelerations is conducted using a finite element analysis of the engine cylinder jacket along with consideration of cylindrical modes of the engine cylinder.
Technical Paper

Investigating Potential Light-duty Efficiency Improvements through Simulation of Turbo-compounding and Waste-heat Recovery Systems

2010-10-25
2010-01-2209
Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2010-10-25
2010-01-2206
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Technical Paper

Steel Processing Effects on Impact Deformation of UltraLight Steel Auto Body

2001-03-05
2001-01-1056
The objective of the research presented in this paper was to assess the influence of stamping process on crash response of UltraLight Steel Auto Body (ULSAB) [1] vehicle. Considered forming effects included thickness variations and plastic strain hardening imparted in the part forming process. The as-formed thickness and plastic strain for front crash parts were used as input data for vehicle crash analysis. Differences in structural performance between crash models with and without forming data were analyzed in order to determine the effects and feasibility of integration of forming processes and crash models.
Technical Paper

Controlling Cyclic Combustion Variations in Lean-Fueled Spark-Ignition Engines

2001-03-05
2001-01-0257
This paper describes the reduction of cyclic combustion variations in spark-ignited engines, especially under idle conditions in which the air-fuel mixture is lean of stoichiometry. Under such conditions, the combination of residual cylinder gas and parametric variations (such as variations in fuel preparation) gives rise to significant combustion instabilities that may lead to customer-perceived engine roughness and transient emissions spikes. Such combustion instabilities may preclude operation at air-fuel ratios that would otherwise be advantageous for fuel economy and emissions. This approach exploits the recognition that a component of the observed combustion instability results from a noise-driven, nonlinear deterministic mechanism that can be actively stabilized by small feedback control actions which result in little if any additional use of fuel.
Technical Paper

Resolving EGR Distribution and Mixing

2002-10-21
2002-01-2882
A minimally invasive spatially resolved capillary inlet mass spectrometer has been used to quantify EGR/air mixing in a Cummins V-8 medium-duty diesel engine. Two EGR-system hardware designs were evaluated in terms of EGR-air mixing at the intake manifold inlet and port-to-port EGR charge uniformity. Performance was assessed at four modalized-FTP engine conditions. One design is found to be considerably better, particularly at three of the four engine conditions. Specific questions such as the effect of maximizing mass air flow on EGR mixing, and if particular cylinders are EGR starved are investigated. The detailed performance characteristics suggest areas to focus improvement efforts, and serve as a foundation for identifying the non-uniformity EGR barriers and origins.
Technical Paper

Tribological Characteristics of Electrolytic Coatings for Aluminum Engine Cylinder Lining Applications

2002-03-04
2002-01-0490
The friction and wear characteristics of three commercially-available, electrolytic coatings for aluminum engine cylinder bores were compared to those of cast iron liners. A Ni/SiC electrocomposite, a hard anodized treatment, and a Plasma Electrolytic Oxidation (PEO) coating were investigated. ASTM standard test method G133-95, non-firing test method, for linearly reciprocating sliding wear was modified to use segments of piston rings and cylinder liners. Tests were conducted using Mr. Goodwrench™ 5W30 as a lubricant at room temperature. The normal force was 150N, the reciprocating frequency was 15Hz, the stroke length was 8mm, and the test duration was 60 minutes. Kinetic friction coefficients ranged from 0.1 to 0.22, typical of boundary lubrication. The Ni/SiC and cast iron samples exhibited the lowest friction. The wear resistance of the Ni/SiC coating was superior to that of cast iron.
Technical Paper

Low Density and Temperature Tolerant Alloys for Automotive Applications

2017-03-28
2017-01-1666
Aluminum alloys containing cerium have excellent castability and retain a substantial fraction of their room temperature strength at temperatures of 200°C and above. High temperature strength is maintained through a thermodynamically trapped, high surface energy intermetallic. Dynamic load partitioning between the aluminum and the intermetallic increases mechanical response. Complex castings have been produced in both permanent mold and sand castings. This versatile alloy system, using an abundant and inexpensive co-product of rare earth mining, is suitable for parts that need to maintain good properties when exposed to temperatures between 200 and 315°C.
Technical Paper

Fuel Composition Effects at Constant RON and MON in an HCCI Engine Operated with Negative Valve Overlap

2006-10-16
2006-01-3275
The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.34 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCI combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small.
X