Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Optimal Engine Torque Management for Reducing Driveline Clunk Using Time - Dependent Metamodels

2007-05-15
2007-01-2236
Quality and performance are two important customer requirements in vehicle design. Driveline clunk negatively affects the perceived quality and must be therefore, minimized. This is usually achieved using engine torque management, which is part of engine calibration. During a tip-in event, the engine torque rate of rise is limited until all the driveline lash is taken up. However, the engine torque rise, and its rate can negatively affect the vehicle throttle response. Therefore, the engine torque management must be balanced against throttle response. In practice, the engine torque rate of rise is calibrated manually. This paper describes a methodology for calibrating the engine torque in order to minimize the clunk disturbance, while still meeting throttle response constraints. A set of predetermined engine torque profiles are calibrated in a vehicle and the transmission turbine speed is measured for each profile. The latter is used to quantify the clunk disturbance.
Technical Paper

Balance between Reliability and Robustness in Engine Cooling System Optimal Design

2007-04-16
2007-01-0594
This paper explores the trade-off between reliability-based design and robustness for an automotive under-hood thermal system using the iSIGHT-FD environment. The interaction between the engine cooling system and the heating, ventilating, and air-conditioning (HVAC) system is described. The engine cooling system performance is modeled using Flowmaster and a metamodel is developed in iSIGHT. The actual HVAC system performance is characterized using test bench data. A design of experiment procedure determines the dominant factors and the statistics of the HVAC performance is obtained using Monte Carlo simulation (MCS). The MCS results are used to build an overall system response metamodel in order to reduce the computational effort. A multi-objective optimization in iSIGHT maximizes the system mean performance and simultaneously minimizes its standard deviation subject to probabilistic constraints.
Technical Paper

Torque Converter Clutch Control using H∞ Loop Shaping

2009-04-20
2009-01-0954
The development of a robust feedback slip controller for a torque converter clutch (TCC) is presented in this paper. The dynamic behavior of the TCC is modeled utilizing the principles of input-output system identification. An H∞ loop shaping controller design technique is applied in order to ensure robust stability against unmodeled system dynamics and large variations in system parameters. Road driving tests indicate that the control system achieves high levels of reliability and stability.
Technical Paper

Towards Shape Optimization of Radiator Cooling Tanks

2002-03-04
2002-01-0952
With increased demand for improvements in the efficiency and operation of all automotive engine components, including those in the engine cooling system, there is a need to develop a set of virtual tools that can aid in both the evaluation and design of automotive components. In the case of automotive radiators, improvements are needed in the overall pressure drop as well as the coolant flow homogeneity across all radiator tubes. The latter criterion is particularly important in the reduction of premature fouling and failure of heat exchangers. Rather than relying on ad hoc geometry changes with the goal of improving the performance of radiators, the coupling of CFD flow simulations with numerical shape optimization methods could assist in the design and testing of automotive heating and cooling components.
Technical Paper

Kinematic Modeling and Analysis of a Cam Based CVT

2013-04-08
2013-01-1371
Continuously variable transmission (CVT) offers many advantages to vehicle performance over traditional transmission technologies. A novel cam based CVT was proposed in US patent # 4,603,240, by J. Klovstad and J. Fortune [1], which has a cam input to drive an angle dependent, clutch actuated output shaft. Based on the patented CVT, a kinematic simulation, utilizing three dimensional CAD software was performed, creating a visualization and analysis model to ascertain system performance and feasibility. This article describes the mechanism created, limitation of the modeling software and the approach utilized to overcome these limitations. The resultant motion is then analyzed to ascertain the performance of the mechanism and determine the viability of the design concept. Key improvements to the system are proposed to the design, based on system performance through this analysis.
Technical Paper

Further Inroads in the Shape Optimization of Radiator Tanks

2003-03-03
2003-01-0530
Improvements in the pressure drop across and flow homogeneity in the tubes of automotive radiators are needed to reduce the power demands on the vehicle water pump and increase the lifetime of the radiator. The goal of this ongoing work is to develop a set of virtual tools coupling CFD flow simulations with numerical shape optimization methods to assist in the design and testing process of automotive heating and cooling components. In SAE paper 2002-01-0952, “Towards Shape Optimization of Radiator Cooling Tanks,” the authors developed and evaluated optimization criteria for pressure drop and mass flow rate distribution in a water-to-air automotive heat exchanger. In this follow-up paper, results based on the implementation of these optimization criteria are presented. More specifically, results concerning the placement of radiator inlets and outlets are addressed.
Technical Paper

Modeling and Optimization of Vehicle Drivetrain Dynamic Performance Considering Uncertainty

2005-05-16
2005-01-2371
A vehicle drivetrain is designed to meet specific vehicle performance criteria which usually involve trade-offs among conflicting performance measures. This paper describes a methodology to optimize the drivetrain design including the axle ratio, transmission shift points and transmission shift ratios considering uncertainty. A complete vehicle dynamic model is developed using the bond graph method. The model includes the vehicle, engine, transmission, torque converter, driveline, and transmission controller. An equivalent MATLAB Simulink model is also developed in order to carry out the nonlinear dynamic analysis efficiently. A deterministic optimization is first performed to determine the optimum design in terms of fuel economy, without considering variations or uncertainties. Subsequently, a Reliability-Based Design Optimization is carried out to find the optimum design in the presence of uncertainty.
Technical Paper

Tooth Mesh Characterization of Spur Gear Pairs with Surface Pitting Damage

2023-04-11
2023-01-0458
A finite element/contact mechanics (FE/CM) method is used to determine the tooth contact forces, static transmission error, and tooth pair stiffnesses for spur gear pairs that have pitting damage. The pitting damage prevents portions of the tooth surface from carrying load, which results in meaningfully different contact pressure distribution on the gear teeth and deformations at the mesh. Pits of elliptical shape are investigated. Parametric analyses are used to investigate the effect of pit width (along the tooth face) and height (along the tooth profile) on the gear tooth mesh interface. Pitting damage increases static transmission error and decreases tooth pair stiffness. Tooth contact forces differ only in the portions of the mesh cycle when multiple pairs of teeth are in contact and share the transmitted load. Pitting damage does not change the loads when only a single pair of teeth are in contact.
Technical Paper

Modelling of a Discrete Variable Compression Ratio (VCR) System for Fuel Consumption Evaluation - Part 1: Model Development

2019-04-02
2019-01-0467
Given increasingly stringent emission targets, engine efficiency has become of foremost importance. While increasing engine compression ratio can lead to efficiency gains, it also leads to higher in-cylinder pressure and temperatures, thus increasing the risk of knock. One potential solution is the use of a Variable Compression Ratio system, which is capable of exploiting the advantages coming from high compression ratio while limiting its drawbacks by operating at low engine loads with a high compression ratio, and at high loads with a low compression ratio, where knock could pose a significant threat. This paper describes the design of a model for the evaluation of fuel consumption for an engine equipped with a VCR system over representative drive cycles. The model takes as inputs; a switching time for the VCR system, the vehicle characteristics, engine performance maps corresponding to two different compression ratios, and a drive cycle.
Technical Paper

Tooth Mesh Modeling of Spur Gears with Tooth Root Crack Damage Using a Finite Element/Contact Mechanics Approach

2021-04-06
2021-01-0699
Motivated by accurate representations in gear dynamics models, this work analyzes the force-deflection relationship between spur gear pairs when the gear teeth have tooth root cracks. A finite element/contact mechanics approach is used to accurately capture the elastic deformations of the gear mesh incorporating kinematic gear motion; elastic deflections of the teeth, root, and blank; and elastic contact between the mating gear teeth. Tooth root crack damage of fixed sizes are analyzed, and the resulting static transmission error and mesh stiffness are calculated. These FE/CM model outputs are relatively insensitive to important gear crack geometry, including the initial crack location, the path it follows, and its final location. Crack-induced changes in static transmission error and mesh stiffness are driven by the remaining amount of the tooth that is healthy. Calculations of average-slope and local-slope mesh stiffness are included because both are used in gear dynamic models.
Technical Paper

Effects of Tuner Parameters on Hydraulic Noise and Vibration

1999-05-17
1999-01-1776
Passengers' frequent requests are for less Noise, Vibration and Harshness (NVH) in the vehicle compartment. This and the reduction of noise and vibration levels from major sources like the engine necessitate better performance of other sources of noise and vibrations in a vehicle. Some of these sources are the hydraulic circuits including the power steering system. Fluid pulses or pressure ripples, generated typically by a pump, become excitation forces to the structure of a vehicle or the steering gear and represent a considerable source of discomfort to the vehicle passengers. Current power steering technology attenuates this ripple along the pressure line connecting the pump to the steering gear. Finding the optimum design configuration for the components (hose, tuner, tube, and others) has been a matter of experience-based trial and error. This paper is a part of a program to simulate and optimize fluid borne noise in hydraulic circuits.
X