Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigation of the Effects of Autoignition on the Heat Release Histories of a Knocking SI Engine Using Wiebe Functions

2008-04-14
2008-01-1088
In this paper, we develop a methodology to enable the isolation of the heat release contribution of knocking combustion from flame-propagation combustion. We first address the empirical modeling of individual non-autoigniting combustion history using the Wiebe function, and subsequently apply this methodology to investigate the effect of autoignition on the heat release history of knocking cycles in a spark ignition (SI) engine. We start by re-visiting the Wiebe function, which is widely used to model empirically mass burned histories in SI engines. We propose a method to tune the parameters of the Wiebe function on a cycle-by-cycle basis, i.e., generating a different Wiebe to suitably fit the heat release history of each cycle. Using non-autoigniting cycles, we show that the Wiebe function can reliably simulate the heat release history of an entire cycle, if only data from the first portion of the cycle is used in the tuning process.
Technical Paper

Tensile Test for Polymer Plastics with Extreme Large Elongation Using Quad-Camera Digital Image Correlation

2016-04-05
2016-01-0418
Polymer plastics are widely used in automotive light weight design. Tensile tests are generally used to obtain material stress-strain curves. Due to the natural of the plastic materials, it could be elongated more than several hundred percent of its original length before breaking. Digital Image Correlation (DIC) Analysis is a precise, full field, optical measurement method. It has been accepted as a practical in-field testing method by the industry. However, with the traditional single-camera or dual-camera DIC system, it is nearly impossible to measure the extreme large strain. This paper introduces a unique experimental procedure for large elongation measurement. By utilization of quad-camera DIC system and data stitch technique, the strain history for plastic material under hundreds percent of elongation can be measured. With a quad-camera DIC system, the correlation was conducted between two adjacent cameras.
X