Refine Your Search

Topic

Author

Search Results

Journal Article

A New Metamodeling Approach for Time-Dependent Reliability of Dynamic Systems with Random Parameters Excited by Input Random Processes

2014-04-01
2014-01-0717
We propose a new metamodeling method to characterize the output (response) random process of a dynamic system with random parameters, excited by input random processes. The metamodel can be then used to efficiently estimate the time-dependent reliability of a dynamic system using analytical or simulation-based methods. The metamodel is constructed by decomposing the input random processes using principal components or wavelets and then using a few simulations to estimate the distributions of the decomposition coefficients. A similar decomposition is also performed on the output random process. A kriging model is then established between the input and output decomposition coefficients and subsequently used to quantify the output random process corresponding to a realization of the input random parameters and random processes. What distinguishes our approach from others in metamodeling is that the system input is not deterministic but random.
Technical Paper

Reconciling Simultaneous Evolution of Ground Vehicle Capabilities and Operator Preferences

2020-04-14
2020-01-0172
An objective evaluation of ground vehicle performance is a challenging task. This is further exacerbated by the increasing level of autonomy, dynamically changing the roles and capabilities of these vehicles. In the context of decision making involving these vehicles, as the capabilities of the vehicles improve, there is a concurrent change in the preferences of the decision makers operating the vehicles that must be accounted for. Decision based methods are a natural choice when multiple conflicting attributes are present, however, most of the literature focuses on static preferences. In this paper, we provide a sequential Bayesian framework to accommodate time varying preferences. The utility function is considered a stochastic function with the shape parameters themselves being random variables. In the proposed approach, initially the shape parameters model either uncertain preferences or variation in the preferences because of the presence of multiple decision makers.
Journal Article

Probabilistic Reanalysis Using Monte Carlo Simulation

2008-04-14
2008-01-0215
An approach for Probabilistic Reanalysis (PRA) of a system is presented. PRA calculates very efficiently the system reliability or the average value of an attribute of a design for many probability distributions of the input variables, by performing a single Monte Carlo simulation. In addition, PRA calculates the sensitivity derivatives of the reliability to the parameters of the probability distributions. The approach is useful for analysis problems where reliability bounds need to be calculated because the probability distribution of the input variables is uncertain or for design problems where the design variables are random. The accuracy and efficiency of PRA is demonstrated on vibration analysis of a car and on system reliability-based optimization (RBDO) of an internal combustion engine.
Journal Article

Reliability Estimation for Multiple Failure Region Problems using Importance Sampling and Approximate Metamodels

2008-04-14
2008-01-0217
An efficient reliability estimation method is presented for engineering systems with multiple failure regions and potentially multiple most probable points. The method can handle implicit, nonlinear limit-state functions, with correlated or non-correlated random variables, which can be described by any probabilistic distribution. It uses a combination of approximate or “accurate-on-demand,” global and local metamodels which serve as indicators to determine the failure and safe regions. Samples close to limit states define transition regions between safe and failure domains. A clustering technique identifies all transition regions which can be in general disjoint, and local metamodels of the actual limit states are generated for each transition region.
Journal Article

Workflow and Asset Management Challenges in a Distributed Organization

2008-04-14
2008-01-1279
Increasingly Automotive OEMs and their suppliers find themselves spread across different continents. This in turn gives rise to knowledge, physical assets and key decision makers also being spread across the globe. This poses significant challenges for the companies to effectively manage and keep track of their resources. It is also challenging to work with teams spread across globe and for the team to arrive at intelligent decisions quickly and efficiently. In last few years we have spent significant amount of person hours trying to create systems and Software to help manage Workflow and Assets spread across diverse Geographic and Political areas.
Journal Article

Managing the Computational Cost of Monte Carlo Simulation with Importance Sampling by Considering the Value of Information

2013-04-08
2013-01-0943
Importance Sampling is a popular method for reliability assessment. Although it is significantly more efficient than standard Monte Carlo simulation if a suitable sampling distribution is used, in many design problems it is too expensive. The authors have previously proposed a method to manage the computational cost in standard Monte Carlo simulation that views design as a choice among alternatives with uncertain reliabilities. Information from simulation has value only if it helps the designer make a better choice among the alternatives. This paper extends their method to Importance Sampling. First, the designer estimates the prior probability density functions of the reliabilities of the alternative designs and calculates the expected utility of the choice of the best design. Subsequently, the designer estimates the likelihood function of the probability of failure by performing an initial simulation with Importance Sampling.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Journal Article

Warranty Forecasting of Repairable Systems for Different Production Patterns

2017-03-28
2017-01-0209
Warranty forecasting of repairable systems is very important for manufacturers of mass produced systems. It is desired to predict the Expected Number of Failures (ENF) after a censoring time using collected failure data before the censoring time. Moreover, systems may be produced with a defective component resulting in extensive warranty costs even after the defective component is detected and replaced with a new design. In this paper, we present a forecasting method to predict the ENF of a repairable system using observed data which is used to calibrate a Generalized Renewal Processes (GRP) model. Manufacturing of products may exhibit different production patterns with different failure statistics through time. For example, vehicles produced in different months may have different failure intensities because of supply chain differences or different skills of production workers, for example.
Technical Paper

EV Penetration Impacts on Environmental Emissions and Operational Costs of Power Distribution Systems

2020-04-14
2020-01-0973
This research assesses the integration of different levels of electric vehicles (EVs) in the distribution system and observes its impacts on environmental emissions and power system operational costs. EVs can contribute to reducing the environmental emission from two different aspects. First, by replacing the traditional combustion engine cars with EVs for providing clean and environment friendly transportation and second, by integrating EVs in the distribution system through the V2G program, by providing power to the utility during peak hours and reducing the emission created by hydrocarbon dependent generators. The PG&E 69-bus distribution system (DS) is used to simulate the integration of EVs and to perform energy management to assess the operational costs and emissions. The uncertainty of driving patterns of EVs are considered in this research to get more accurate results.
Journal Article

Comparison of Tribological Performance of WS2 Nanoparticles, Microparticles and Mixtures Thereof

2014-04-01
2014-01-0949
Tribological performance of tungsten sulfide (WS2) nanoparticles, microparticles and mixtures of the two were investigated. Previous research showed that friction and wear reduction can be achieved with nanoparticles. Often these improvements were mutually exclusive, or achieved under special conditions (high temperature, high vacuum) or with hard-to-synthesize inorganic-fullerene WS2 nanoparticles. This study aimed at investigating the friction and wear reduction of WS2 of nanoparticles and microparticles that can be synthesized in bulk and/or purchased off the shelf. Mixtures of WS2 nanoparticles and microparticles were also tested to see if a combination of reduced friction and wear would be achieved. The effect of the mixing process on the morphology of the particles was also reported. The microparticles showed the largest reduction in coefficient of friction while the nanoparticles showed the largest wear scar area reduction.
Technical Paper

Power Management Software Interfaces Standard

2006-11-07
2006-01-3034
The current system requirements for the power management subsystem and ground combat vehicles for the Future Combat System require higher power and voltages for greater energy efficiency, advanced mobility, lethality and survivability. Efficient and reliable electrical power management is an essential capability within current force ground combat vehicles and will become even more important with the increased electrical power demands of future force vehicles which will exceed the capabilities of onboard power generation/storage technologies. This paper describes how to meet the aforementioned power distribution challenges through the development of a power management software interfaces standard that will provide the flexibility required by various programs and vehicles yet still provide a consistent framework for software development providing a consistent environment for all future Army programs.
Technical Paper

Engine Simulation of a Restricted FSAE Engine, Focusing on Restrictor Modelling

2006-12-05
2006-01-3651
One-dimensional (1D) engine simulation packages are limited in modeling flows through an adverse pressure gradient where boundary layer separation is more likely to occur, as in the case of the diffuser part of the restrictor. The restrictor modeling difficulty usually manifests itself as an engine model that consumes a lot of effort (both computational and from the user) in the modeling of the restrictor. The approach sought in this work was to provide a flow vs pressure drop dependency to the code such that it does not consume too much effort in the analysis of the restrictor. This approach is similar to that used for the valve flow, where a look up table is typically provided for determining the flow. Experimentally determined flow measurements on a thin-plate orifice, a short restrictor and a long restrictor are presented and discussed. The developed model gave excellent results in an acyclic steady-state simulation and is being integrated in the full engine model.
Technical Paper

An Efficient Possibility-Based Design Optimization Method for a Combination of Interval and Random Variables

2007-04-16
2007-01-0553
Reliability-based design optimization accounts for variation. However, it assumes that statistical information is available in the form of fully defined probabilistic distributions. This is not true for a variety of engineering problems where uncertainty is usually given in terms of interval ranges. In this case, interval analysis or possibility theory can be used instead of probability theory. This paper shows how possibility theory can be used in design and presents a computationally efficient sequential optimization algorithm. The algorithm handles problems with only uncertain or a combination of random and uncertain design variables and parameters. It consists of a sequence of cycles composed of a deterministic design optimization followed by a set of worst-case reliability evaluation loops. A crank-slider mechanism example demonstrates the accuracy and efficiency of the proposed sequential algorithm.
Technical Paper

Investigation of the Effects of Autoignition on the Heat Release Histories of a Knocking SI Engine Using Wiebe Functions

2008-04-14
2008-01-1088
In this paper, we develop a methodology to enable the isolation of the heat release contribution of knocking combustion from flame-propagation combustion. We first address the empirical modeling of individual non-autoigniting combustion history using the Wiebe function, and subsequently apply this methodology to investigate the effect of autoignition on the heat release history of knocking cycles in a spark ignition (SI) engine. We start by re-visiting the Wiebe function, which is widely used to model empirically mass burned histories in SI engines. We propose a method to tune the parameters of the Wiebe function on a cycle-by-cycle basis, i.e., generating a different Wiebe to suitably fit the heat release history of each cycle. Using non-autoigniting cycles, we show that the Wiebe function can reliably simulate the heat release history of an entire cycle, if only data from the first portion of the cycle is used in the tuning process.
Technical Paper

Imprecise Reliability Assessment When the Type of the Probability Distribution of the Random Variables is Unknown

2009-04-20
2009-01-0199
In reliability design, often, there is scarce data for constructing probabilistic models. It is particularly challenging to model uncertainty in variables when the type of their probability distribution is unknown. Moreover, it is expensive to estimate the upper and lower bounds of the reliability of a system involving such variables. A method for modeling uncertainty by using Polynomial Chaos Expansion is presented. The method requires specifying bounds for statistical summaries such as the first four moments and credible intervals. A constrained optimization problem, in which decision variables are the coefficients of the Polynomial Chaos Expansion approximation, is formulated and solved in order to estimate the minimum and maximum values of a system’s reliability. This problem is solved efficiently by employing a probabilistic re-analysis approach to approximate the system reliability as a function of the moments of the random variables.
Technical Paper

FEA Simulation of Induction Hardening and Residual Stress of Auto Components

2009-04-20
2009-01-0418
The paper studies the distributions of residual stresses in auto components after induction hardening. Three prototype parts are analyzed in this paper. Firstly, the temperature fields of the analyzed parts are quantitatively simulated during quenching by simulating surface heating to the austenitization temperature of the material. Secondly, the formation and states of the residual stresses are predicted. Therefore the distribution of residual stress is simulated and shows compressive stresses on the surface of components so that the strength can be improved. The simulated results by computer are compared with experimental results. The good comparison indicates that the results obtained by the FEA analysis are reliable. Thus, it can be concluded that the FEA (Finite element analysis) program is effectively developed to simulate heating and quenching processes and residual stresses distribution.
Technical Paper

Reliability Analysis Using Monte Carlo Simulation and Response Surface Methods

2004-03-08
2004-01-0431
An accurate and efficient Monte Carlo simulation (MCS) method is developed in this paper for limit state-based reliability analysis, especially at system levels, by using a response surface approximation of the failure indicator function. The Moving Least Squares (MLS) method is used to construct the response surface of the indicator function, along with an Optimum Symmetric Latin Hypercube (OSLH) as the sampling technique. Similar to MCS, the proposed method can easily handle implicit, highly nonlinear limit-state functions, with variables of any statistical distributions and correlations. However, the efficiency of MCS can be greatly improved. The method appears to be particularly efficient for multiple limit state and multiple design point problem. A mathematical example and a practical example are used to highlight the superior accuracy and efficiency of the proposed method over traditional reliability methods.
Technical Paper

Reliability and Resiliency Definitions for Smart Microgrids Based on Utility Theory

2017-03-28
2017-01-0205
Reliability and resiliency (R&R) definitions differ depending on the system under consideration. Generally, each engineering sector defines relevant R&R metrics pertinent to their system. While this can impede cross-disciplinary engineering projects as well as research, it is a necessary strategy to capture all the relevant system characteristics. This paper highlights the difficulties associated with defining performance of such systems while using smart microgrids as an example. Further, it develops metrics and definitions that are useful in assessing their performance, based on utility theory. A microgrid must not only anticipate load conditions but also tolerate partial failures and remain optimally operating. Many of these failures happen infrequently but unexpectedly and therefore are hard to plan for. We discuss real life failure scenarios and show how the proposed definitions and metrics are beneficial.
Technical Paper

Real-Time Driving Simulation of Magneto-Rheological Active Damper Stryker Suspension

2012-04-16
2012-01-0303
Real-time driving simulations are an important tool for verifying vehicle and vehicle component designs with a driver in the loop. They not only provide a cost effective solution but also an ability to verify designs in a safe and controlled operating environment. A real-time driving experiment has been developed for Stryker to compare the ride and handling performance of a baseline passive suspension to that of a Magneto-Rheological (MR) semi-active damper suspension. The Tank Automotive Research Development and Engineering Center (TARDEC) has integrated this new suspension into a real time vehicle dynamics model of the Stryker using the MR suspension model developed by the Original Equipment Manufacturer (OEM). Using this real-time model and the TARDEC Ride Motion Simulator (RMS), TARDEC associates, along with associates from the Stryker Program Management office and the suspension OEM were able to drive and compare the passive and MR Stryker in a virtual environment.
Technical Paper

Diminishment of Cuts in Durability Test Time Reduction Methods

2018-04-03
2018-01-0622
In this study, we extend and improve on the methods introduced by Brudnak et al. [1] by adding a second objective to the reduction of test time. This second objective under consideration is to diminish or reduce the number of cuts or deletions to the time histories during an editing process. As discussed in [1], segment-based methods consider each segment for retention or deletion based on its own localized severity, not considering the segments around it. As a result, retained segments can be widely scattered in the time domain depending on signal characteristics and therefore a large number of cuts can be induced unintentionally. Regardless of the joining method, such cuts and joins require artificial signal processing and should therefore be minimized. In this paper we present techniques to minimize these cuts while at the same time maintaining our original goals of time reduction and severity retention.
X