Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Predicting Driving Postures and Seated Positions in SUVs Using a 3D Digital Human Modeling Tool

2008-06-17
2008-01-1856
3D digital human modeling (DHM) tools for vehicle packaging facilitate ergonomic design and evaluation based on anthropometry, comfort, and force analysis. It is now possible to quickly predict postures and positions for drivers with selected anthropometry based on ergonomics principles. Despite their powerful visual representation technology for human movements and postures, these tools are still questioned with regard to the validity of the output they provide, especially when predictions are made for different populations. Driving postures and positions of two populations (i.e. North Americans and Koreans) were measured in actual and mock-up SUVs to investigate postural differences and evaluate the results provided by a DHM tool. No difference in driving postures was found between different stature groups within the same population. Between the two populations, however, preferred angles differed for three joints (i.e., ankle, thigh, and hip).
Technical Paper

Micro-Texture Tailored Friction Modeling and Discrete Application in Drawability Improvement

2010-04-12
2010-01-0982
Friction plays an important role in the deep drawing process. Previous research shows friction condition can be tailored by applying micro-textures on tooling surfaces. A friction model is proposed to reveal the mechanism of altering friction condition by configuring micro-texture. A discrete friction concept is proposed to improve drawability of sheet metal and demonstrates numerically on a non-symmetric geometry drawing process.
Technical Paper

A Survey of Automotive Diagnostic Equipment and Procedures

1993-03-01
930769
The introduction of advanced electronic controls in passenger vehicles over the last decade has made traditional diagnostic methods inadequate to satisfy on- and off-board diagnostic needs. Due to the complexity of today's automotive control systems, it is imperative that appropriate diagnostic tools be developed that are capable of satisfying current and projected service and on-board requirements. The performance of available diagnostic and test equipment is still amenable to further improvement, especially as it pertains to the diagnosis of incipient and intermittent faults. It is our contention that significant improvement is possible in these areas. This paper briefly summarizes the evolution of on- and off-board diagnostic tools documented in the published literature, with the aim of giving the reader an understanding of their capabilities and limitations, and it further proposes alternative solutions that may be adopted as a basis for an advanced diagnostic instrument.
Technical Paper

Integrated Powertrain Diagnostic System: Linking On- and Off-Board Diagnostic Strategies

1996-02-01
960621
A number of automotive diagnostic equipment and procedures have evolved over the last two decades, leading to two generations of on-board diagnostic requirements (OBDI and OBDII), increasing the number of components and systems to be monitored by the diagnostic tools. The goal of On-Board Diagnostic is to alert the driver to the presence of a malfunction of the emission control system, and to identify the location of the problem in order to assist mechanics in properly performing repairs. The aim of this paper is to suggest a methodology for the development of an Integrated Powertrain Diagnostic System (EPDS) that can combine the information supplied by conventional tailpipe inspection programs with onboard diagnostics to provide fast and reliable diagnosis of malfunctions.
Technical Paper

Validation Results from Using NADSdyna Vehicle Dynamics Simulation

1997-02-24
970565
This paper presents an evaluation of a vehicle dynamics model intended to be used for the National Advanced Driving Simulator (NADS). Dynamic validation for high performance simulation is not merely a comparison between experimental and simulation plots. It involves strong insight of vehicle's subsystems mechanics, limitations of the mathematical formulations, and experimental predictions. Lateral, longitudinal, and ride dynamics are evaluated using field test data, and analytical diagnostics. The evaluation includes linear and non-linear range of vehicle dynamics response.
Technical Paper

Experimental Verification of Design Charts for Acoustic Absorbers

1997-05-20
971951
Design charts which predict acoustic absorption of porous insulators were verified experimentally using the two-microphone technique to measure the normal incidence absorption coefficient of three glass fiber materials in two different arrangements - a single-layer sample and a single layer in front of an air space, each backed by a rigid termination. The specific flow resistivities of the materials ranged from 2,000 to 52,000 mks rayls/m. Experimentally determined absorption coefficients were in agreement with those predicted by the design charts. The results indicate that these charts could be a useful tool in designing sound absorbers for practical applications.
Technical Paper

The Application of Fuzzy Logic to the Diagnosis of Automotive Systems

1997-02-24
970208
The evolution of the diagnostic equipment for automotive application is the direct effect of the implementation of sophisticated and high technology control systems in the new generation of passenger cars. One of the most challenging issues in automotive diagnostics is the ability to assess, to analyze, and to integrate all the information and data supplied by the vehicle's on-board computer. The data available might be in the form of fault codes or sensors and actuators voltages. Moreover, as environmental regulations get more stringent, knowledge of the concentration of different species emitted from the tailpipe during the inspection and maintenance programs can become of great importance for an integrated powertrain diagnostic system. A knowledge-based diagnostic tool is one of the approaches that can be adopted to carry out the challenging task of detecting and diagnosing faults related to the emissions control system in an automobile.
Technical Paper

Real Time Bearing Defect Classification Using Time Domain Analysis and Deep Learning Algorithms

2023-04-11
2023-01-0096
Structural Health Monitoring (SHM), especially in the field of rotary machinery diagnosis, plays a crucial role in determining the defect category as well as its intensity in a machine element. This paper proposes a new framework for real-time classification of structural defects in a roller bearing test rig using time domain-based classification algorithms. Along with the bearing defects, the effect of eccentric shaft loading has also been analyzed. The entire system comprises of three modules: sensor module – using accelerometers for data collection, data processing module – using time-domain based signal processing algorithms for feature extraction, and classification module – comprising of deep learning algorithms for classifying between different structural defects occurring within the inner and outer race of the bearing.
X