Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Technical Paper

Comparison of Intermediate-Combustion Products Formed in Engine with and without Ignition

1955-01-01
550262
RESULTS of tests performed on a modified type F-4 CFR engine show that precombustion reactions in both the fired and motored engine gave the same carbonyl products. The maximum specific yields of these carbonyls were similar for a given fuel compressed with comparable pressure-time-temperature histories in both motored- and fired-engine tests. As the motored engine seems to duplicate precombustion reactions occurring in a fired engine under normal operating conditions, the authors of this paper conclude that the motored engine, offering ease of control and sampling, is a convenient and valid tool for combustion research.
Technical Paper

Criticality Assessment of Simulation-Based AV/ADAS Test Scenarios

2022-03-29
2022-01-0070
Testing any new safety technology of Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) requires simulation-based validation and verification. The specific scenarios used for testing, outline incidences of accidents or near-miss events. In order to simulate these scenarios, specific values for all the above parameters are required including the ego vehicle model. The ‘criticality’ of a scenario is defined in terms of the difficulty level of the safety maneuver. A scenario could be over-critical, critical, or under-critical. In over-critical scenarios, it is impossible to avoid a crash whereas, for under-critical scenarios, no action may be required to avoid a crash. The criticality of the scenario depends on various parameters e.g. speeds, distances, road/tire parameters, etc. In this paper, we propose a definition of criticality metric and identify the parameters such that a scenario becomes critical.
Technical Paper

A Comparative Study between Physics, Electrical and Data Driven Lithium-Ion Battery Voltage Modeling Approaches

2022-03-29
2022-01-0700
This paper benchmarks three different lithium-ion (Li-ion) battery voltage modelling approaches, a physics-based approach using an Extended Single Particle Model (ESPM), an equivalent circuit model, and a recurrent neural network. The ESPM is the selected physics-based approach because it offers similar complexity and computational load to the other two benchmarked models. In the ESPM, the anode and cathode are simplified to single particles, and the partial differential equations are simplified to ordinary differential equations via model order reduction. Hence, the required state variables are reduced, and the simulation speed is improved. The second approach is a third-order equivalent circuit model (ECM), and the third approach uses a model based on a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN)). A Li-ion pouch cell with 47 Ah nominal capacity is used to parameterize all the models.
Technical Paper

Study on State-of-the-Art Preventive Maintenance Techniques for ADS Vehicle Safety

2023-04-11
2023-01-0846
1 Autonomous Driving Systems (ADS) are developing rapidly. As vehicle technology advances to SAE level 3 and above (L4, L5), there is a need to maximize and verify safety and operational benefits. As a result, maintenance of these ADS systems is essential which includes scheduled, condition-based, risk-based, and predictive maintenance. A lot of techniques and methods have been developed and are being used in the maintenance of conventional vehicles as well as other industries, but ADS is new technology and several of these maintenance types are still being developed as well as adapted for ADS. In this work, we are presenting a systematic literature review of the “State of the Art” knowledge for the maintenance of a fleet of ADS which includes fault diagnostics, prognostics, predictive maintenance, and preventive maintenance.
Technical Paper

Application of Adversarial Networks for 3D Structural Topology Optimization

2019-04-02
2019-01-0829
Topology optimization is a branch of structural optimization which solves an optimal material distribution problem. The resulting structural topology, for a given set of boundary conditions and constraints, has an optimal performance (e.g. minimum compliance). Conventional 3D topology optimization algorithms achieve quality optimized results; however, it is an extremely computationally intensive task which is, in general, impractical and computationally unachievable for real-world structural optimal design processes. Therefore, the current development of rapid topology optimization technology is experiencing a major drawback. To address the issues, a new approach is presented to utilize the powerful abilities of large deep learning models to replicate this design process for 3D structures. Adversarial models, primarily Wasserstein Generative Adversarial Networks (WGAN), are constructed which consist of 2 deep convolutional neural networks (CNN) namely, a discriminator and a generator.
Technical Paper

Ultra-Low NOx Emission Prediction for Heavy Duty Diesel Applications Using a Map-Based Approach

2019-04-02
2019-01-0987
As vehicle emissions regulations become increasingly stringent, there is a growing need to accurately model aftertreatment systems to aid in the development of ultra-low NOx vehicles. Common solutions to this problem include the development of complex chemical models or expansive neural networks. This paper aims to present the development process of a simpler Selective Catalytic Reduction (SCR) conversion efficiency Simulink model for the purposes of modeling tail pipe NOx emission levels based on various inputs, temperature shifts and SCR locations, arrangements and/or sizes in the system. The main objective is to utilize this model to predict tail pipe NOx emissions of the EPA Federal Test Procedures for heavy-duty vehicles. The model presented within is focused exclusively on heavy-duty application compression ignition engines and their corresponding aftertreatment setups.
Technical Paper

System Engineering of an Advanced Driver Assistance System

2019-04-02
2019-01-0876
Current Advanced Driver Assistance Systems (ADAS) often interact with the driver; aiding with either warnings or direct intervention. This work explores the development of an ADAS system to provide lane departure warning, forward collision warning, and a recommended following distance for a custom plug-in hybrid-electric vehicle. The system utilizes off-the-shelf hardware with in-house computer vision and sensor fusion algorithms to create a low-cost SAE Level 0 driver assistance system. The system utilizes a radar sensor as well as a camera to detect, classify, and track target vehicles. This work will illustrate the systems engineering methods used for outlining customer requirements, technical requirements, component selection, software development, simulation, vehicle fitment, and validation. Similar system engineering processes could be implemented for higher level SAE systems.
Technical Paper

Transformational Technologies Reshaping Transportation - An Academia Perspective

2019-10-14
2019-01-2620
This paper and the associated lecture present an overview of technology trends and of market and business opportunities created by technology, as well as of the challenges posed by environmental and economic considerations. Commercial vehicles are one of the engines of our economy. Moving goods and people efficiently and economically is a key to continued industrial development and to strong employment. Trucks are responsible for nearly 70% of the movement of goods in the USA (by value) and represent approximately 300 billion of the 3.21 trillion annual vehicle miles travelled by all vehicles in the USA while public transit enables mobility and access to jobs for millions of people, with over 10 billion trips annually in the USA creating and sustaining employment opportunities.
Journal Article

Ensuring Fuel Economy Performance of Commercial Vehicle Fleets Using Blockchain Technology

2019-04-02
2019-01-1078
In the past, research on blockchain technology has addressed security and privacy concerns within intelligent transportation systems for critical V2I and V2V communications that form the backbone of Internet of Vehicles. Within trucking industry, a recent trend has been observed towards the use of blockchain technology for operations. Industry stakeholders are particularly looking forward to refining status quo contract management and vehicle maintenance processes through blockchains. However, the use of blockchain technology for enhancing vehicle performance in fleets, especially while considering the fact that modern-day intelligent vehicles are prone to cyber security threats, is an area that has attracted less attention. In this paper, we demonstrate a case study that makes use of blockchains to securely optimize the fuel economy of fleets that do package pickup and delivery (P&D) in urban areas.
Journal Article

Impact of Power Profile on the Estimation of Second Life Batteries Remaining Useful Life

2021-04-06
2021-01-0767
Second-life batteries (SLBs, automotive batteries that have lost their usefulness for vehicular applications) can provide low-cost environment-friendly solutions for grid-connected systems. The estimation of the remaining useful life (RUL) of SLBs is a fundamental step for the development of appropriate business models. This paper aims at unveiling correlations between the SLB's power profile and aging performance by defining appropriate metrics. A widely accepted empirical degradation model, that can predict calendar and cycling aging, is considered for this study. Several grid-connected power profiles are analyzed, such as peak shaving for DC-fast charge stations and frequency regulation. The results of this analysis show a correlation between the SLB's replacement rate with the minimum daily SoC.
Technical Paper

Co-Simulation Framework for Electro-Thermal Modeling of Lithium-Ion Cells for Automotive Applications

2023-08-28
2023-24-0163
Battery packs used in automotive application experience high-power demands, fast charging, and varied operating conditions, resulting in temperature imbalances that hasten degradation, reduce cycle life, and pose safety risks. The development of proper simulation tools capable of capturing both the cell electrical and thermal response including, predicting the cell’s temperature rise and distribution, is critical to design efficient and reliable battery packs. This paper presents a co-simulation model framework capable of predicting voltage, 2-D heat generation and temperature distribution throughout a cell. To capture the terminal voltage and 2-D heat generation across the cell, the simulation framework employs a high-fidelity electrical model paired with a charge balance model based on the Poisson equation. The 2-D volumetric heat generation provided by the charge balance model is used to predict the temperature distribution across the cell surface using CFD software.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic. We show, however, that MitM attacks can be realized without direct tampering of any CAN hardware. Our demonstration leverages how diagnostic applications based on RP1210 are vulnerable to Machine-In-The-Middle attacks. Test results show SAE J1939 communications, including single frame and multi-framed broadcast and on-request messages, are susceptible to data manipulation attacks where a shim DLL is used as a Machine-In-The-Middle. The demonstration shows these attacks can manipulate data that may mislead vehicle operators into taking the wrong actions.
X