Refine Your Search

Topic

Author

Search Results

Journal Article

A Method of Frequency Content Based Analysis of Driving Braking Behavior

2015-04-14
2015-01-1564
Typically, when one thinks of advanced driver assistance systems (ADAS), systems such as Forward Collision Warning (FCW) and Collision Imminent Braking (CIB) come to mind. In these systems driver assistance is provided based on knowledge about the subject vehicle and surrounding objects. A new class of these systems is being implemented. These systems not only use information on the surrounding objects but also use information on the driver's response to an event, to determine if intervention is necessary. As a result of this trend, an advanced level of understanding of driver braking behavior is necessary. This paper presents an alternate method of analyzing driver braking behavior. This method uses a frequency content based approach to study driver braking and allows for the extraction of significantly more data from driver profiles than traditionally would have been done.
Technical Paper

The Effects of Varying Penetration Rates of L4-L5 Autonomous Vehicles on Fuel Efficiency and Mobility of Traffic Networks

2020-04-14
2020-01-0137
With the current drive of automotive and technology companies towards producing vehicles with higher levels of autonomy, it is inevitable that there will be an increasing number of SAE level L4-L5 autonomous vehicles (AVs) on roadways in the near future. Microscopic traffic simulators that simulate realistic traffic flow are crucial in studying, understanding and evaluating the fuel usage and mobility effects of having a higher number of autonomous vehicles (AVs) in traffic under realistic mixed traffic conditions including both autonomous and non-autonomous vehicles. In this paper, L4-L5 AVs with varying penetration rates in total traffic flow were simulated using the microscopic traffic simulator Vissim on urban, mixed and freeway roadways. The roadways used in these simulations were replicas of real roadways in and around Columbus, Ohio, including an AV shuttle routes in operation.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
Technical Paper

Model Based Fault Diagnosis for Engine under Speed Control

2007-04-16
2007-01-0775
An appropriate fault diagnosis and Isolation (FDI) strategy is very useful to prevent system failure. In this paper, a model-based fault diagnosis strategy is developed for an internal combustion engine (ICE) under speed control. Engine throttle fault and the manifold pressure sensor fault are detected and isolated. A nonlinear observer based residual generation approach is proposed. Manifold pressure and throttle are observed. Fault codes are designed with redundancy to prevent bit error. Performance of fault diagnosis strategy has been evaluated with simulations.
Technical Paper

Effect of Traffic, Road and Weather Information on PHEV Energy Management

2011-09-11
2011-24-0162
Energy management plays a key role in achieving higher fuel economy for plug-in hybrid electric vehicle (PHEV) technology; the state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining the fuel consumed. The energy management algorithm should be designed to meet all driving scenarios while achieving the best possible fuel economy. The knowledge of the power requirement during a driving trip is necessary to achieve the best fuel economy results; performance of the energy management algorithm is closely related to the amount of information available in the form of road grade, velocity profiles, trip distance, weather characteristics and other exogenous factors. Intelligent transportation systems (ITS) allow vehicles to communicate with one another and the infrastructure to collect data about surrounding, and forecast the expected events, e.g., traffic condition, turns, road grade, and weather forecast.
Technical Paper

Kinematics Response of the PMHS Brain to Rotational Loading of the Head: Development of Experimental Methods and Analysis of Preliminary Data

2018-04-03
2018-01-0547
Experimentally derived brain response envelopes are needed to evaluate and validate existing finite element (FE) head models. Motion of the brain relative to the skull during rotational input was measured using high-speed biplane x-ray. To generate repeatable, reproducible, and scalable data, methods were developed to reduce experimental variance. An “extreme-energy” device was developed to provide a controlled input that is unaffected by specimen characteristics. Additionally, a stereotactic frame was used to deploy radiopaque markers at specific, pre-determined locations within the brain. One post-mortem human surrogate (PMHS) head specimen was subjected to repeat tests of a half-sine rotational speed pulse in the sagittal plane. The desired pulse had a peak angular speed of 40 rad/s and duration of 30 ms. Relative motion of the brain was quantified using radiopaque targets and high-speed biplane x-ray. Frontal and occipital intracranial pressure (ICP) were also measured.
Technical Paper

Application of Scaled Deflection Injury Criteria to Two Small, Fragile Females in Side Impact Motor Vehicle Crashes

2018-04-03
2018-01-0542
Thoracic injury criteria have been previously developed to predict thoracic injury for vehicle occupants as a function of biomechanical response. Historically, biomechanical testing of post-mortem human surrogates (PMHS) for injury criteria development has primarily been focused on mid-sized males. Response targets and injury criteria for other demographics, including small females, have been determined by scaling values from mid-sized males. The objective of this study was to explore the applicability of scaled injury criteria to their representative population. Two PMHS were subjected to a side-impact loading condition which replicates a near-side, MDB-to-vehicle impact for the driver. This was accomplished using the Advanced Side Impact System, or ASIS, on a HYGE sled. The sled acceleration matched the acceleration profile of an impacted vehicle, while the four pneumatic cylinders of the ASIS produced realistic door intrusion.
Technical Paper

A Methodology for Threat Assessment in Cut-in Vehicle Scenarios

2021-04-06
2021-01-0873
Advanced Driver Assistance System (ADAS) has become a common standard feature assisting greater safety and fuel efficiency in the latest automobiles. Yet some ADAS systems fail to improve driving comfort for vehicle occupants who expect human-like driving. One of the more difficult situations in ADAS-assisted driving involves instances with cut-in vehicles. In vehicle control, determining the moment at which the system recognizes a cut-in vehicle as an active target is a challenging task. A well-designed comprehensive threat assessment developed for cut-in vehicle driving scenarios should eliminate abrupt and excessive deceleration of the vehicle and produce a smooth and safe driving experience. This paper proposes a novel methodology for threat assessment for driving instances involving a cut-in vehicle. The methodology takes into consideration kinematics, vehicle dynamics, vehicle stability, road condition, and driving comfort.
Technical Paper

Design, Modeling, and Validation of a Flame Reformer for LNT External By-Pass Regeneration

2006-04-03
2006-01-1367
Experimental results are presented for a technique of converting Diesel fuel to a gas stream rich in carbon monoxide and hydrogen suitable for Lean NOx Trap (LNT) regeneration. The device is relatively simple and relies upon a premixed, rich flame to generate gas with 4.5% H2 and 10% CO. The device, referred to as a flame reformer, offers a number of advantages over other methods of reductant generation for bypass regeneration LNT systems. Specifically, the device offers rapid dynamic response, potential lower cost, with a similar level of performance to other proposed methods of reductant generation.
Technical Paper

Multiple Rear-end Collisions in Freeway Traffic, Their Causes and Their Avoidance

1970-02-01
700085
The sensitivity factor, λ, of stimulus-response car following equations was computed, based on response times, τ, obtained from aerial survey data. Vehicles of a platoon are investigated as they approach, proceed through, and leave behind a kinematic disturbance, and an inherent local and asymptotic instability is discovered. Aerial survey data is used in a numerical example to demonstrate how multiple rear-end collisions can be triggered by one vehicle. A driver aid system, informing drivers about the differential velocity between lead and following vehicles, could improve stability, although the final answer appears to lie in automated or semi-automated longitudinal control systems.
Technical Paper

Comparison of Intermediate-Combustion Products Formed in Engine with and without Ignition

1955-01-01
550262
RESULTS of tests performed on a modified type F-4 CFR engine show that precombustion reactions in both the fired and motored engine gave the same carbonyl products. The maximum specific yields of these carbonyls were similar for a given fuel compressed with comparable pressure-time-temperature histories in both motored- and fired-engine tests. As the motored engine seems to duplicate precombustion reactions occurring in a fired engine under normal operating conditions, the authors of this paper conclude that the motored engine, offering ease of control and sampling, is a convenient and valid tool for combustion research.
Technical Paper

Cooperative Collision Avoidance in a Connected Vehicle Environment

2019-04-02
2019-01-0488
Connected vehicle (CV) technology is among the most heavily researched areas in both the academia and industry. The vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to pedestrian (V2P) communication capabilities enable critical situational awareness. In some cases, these vehicle communication safety capabilities can overcome the shortcomings of other sensor safety capabilities because of external conditions such as 'No Line of Sight' (NLOS) or very harsh weather conditions. Connected vehicles will help cities and states reduce traffic congestion, improve fuel efficiency and improve the safety of the vehicles and pedestrians. On the road, cars will be able to communicate with one another, automatically transmitting data such as speed, position, and direction, and send alerts to each other if a crash seems imminent. The main focus of this paper is the implementation of Cooperative Collision Avoidance (CCA) for connected vehicles.
Technical Paper

Criticality Assessment of Simulation-Based AV/ADAS Test Scenarios

2022-03-29
2022-01-0070
Testing any new safety technology of Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) requires simulation-based validation and verification. The specific scenarios used for testing, outline incidences of accidents or near-miss events. In order to simulate these scenarios, specific values for all the above parameters are required including the ego vehicle model. The ‘criticality’ of a scenario is defined in terms of the difficulty level of the safety maneuver. A scenario could be over-critical, critical, or under-critical. In over-critical scenarios, it is impossible to avoid a crash whereas, for under-critical scenarios, no action may be required to avoid a crash. The criticality of the scenario depends on various parameters e.g. speeds, distances, road/tire parameters, etc. In this paper, we propose a definition of criticality metric and identify the parameters such that a scenario becomes critical.
Technical Paper

Study on State-of-the-Art Preventive Maintenance Techniques for ADS Vehicle Safety

2023-04-11
2023-01-0846
1 Autonomous Driving Systems (ADS) are developing rapidly. As vehicle technology advances to SAE level 3 and above (L4, L5), there is a need to maximize and verify safety and operational benefits. As a result, maintenance of these ADS systems is essential which includes scheduled, condition-based, risk-based, and predictive maintenance. A lot of techniques and methods have been developed and are being used in the maintenance of conventional vehicles as well as other industries, but ADS is new technology and several of these maintenance types are still being developed as well as adapted for ADS. In this work, we are presenting a systematic literature review of the “State of the Art” knowledge for the maintenance of a fleet of ADS which includes fault diagnostics, prognostics, predictive maintenance, and preventive maintenance.
Technical Paper

Transmission Clutch Pressure Control System: Modeling, Controller Development and Implementation

2000-03-06
2000-01-1149
This paper describes the modeling, controller development, and implementation of a transmission clutch pressure control system. A nonlinear analytical model for the clutch pressure control system is developed and implemented using Matlab/Simulink, and validated by experimental data. The dominant dynamics are identified via model analysis, and a linear model is derived for controller design. Openloop (feedforward) and closed loop (feedback) pressure control strategies are designed and implemented in a test setup. Experimental results show that the combined feedforward and feedback control gives superior performance as compared to feedforward control alone.
Technical Paper

Ultra-Low NOx Emission Prediction for Heavy Duty Diesel Applications Using a Map-Based Approach

2019-04-02
2019-01-0987
As vehicle emissions regulations become increasingly stringent, there is a growing need to accurately model aftertreatment systems to aid in the development of ultra-low NOx vehicles. Common solutions to this problem include the development of complex chemical models or expansive neural networks. This paper aims to present the development process of a simpler Selective Catalytic Reduction (SCR) conversion efficiency Simulink model for the purposes of modeling tail pipe NOx emission levels based on various inputs, temperature shifts and SCR locations, arrangements and/or sizes in the system. The main objective is to utilize this model to predict tail pipe NOx emissions of the EPA Federal Test Procedures for heavy-duty vehicles. The model presented within is focused exclusively on heavy-duty application compression ignition engines and their corresponding aftertreatment setups.
Technical Paper

Throttle Flow Characterization

2000-03-06
2000-01-0571
A time-efficient throttle flow data collection method is described. It uses a sonic nozzle flow bench to measure air flow as a function of throttle angle and pressure in a manner analogous to on-engine dynamometer throttle flow characterization. Opening each sonic nozzle combination, then recording throttle downstream pressure and computed nozzle flow allows data to be taken in a fraction of the time normally needed. Throttle flow modeling considerations are then discussed.
Technical Paper

Robust Path Tracking Control for Autonomous Heavy Vehicles

2018-04-03
2018-01-1082
With high maneuverability and heavy-duty load capacity, articulated steer vehicles (ASV) are widely used in construction, forestry and mining sectors. However, the steering process of ASV is much different from wheeled steer vehicles and tractor-trailer vehicles. Unsuitable steering control in path following could easily give rise to the “snaking” behaviour, which greatly reduces the safety and stability of ASV. In order to achieve precise control for ASV, a novel path tracking control method is proposed by virtual terrain field (VTF) method. A virtual U-shaped terrain field is assumed to exist along the reference path. The virtual terrain altitude depends on the lateral error, heading error, preview distance and road curvature. If the vehicle deviates from the reference line, it will be pulled back to the lowest position under the influence of additional lateral tire forces which are caused by the virtual banked road.
Technical Paper

Effective Suppression of Surge Instabilities in Turbocharger Compression Systems through a Close-Coupled Compressor Inlet Restriction

2018-09-10
2018-01-1714
The current work demonstrates effective suppression of compression system surge instabilities by installing a variable cross-sectional flow area restriction within the inlet duct of a turbocharger centrifugal compressor operating on a bench-top facility. This restriction couples with the compressor, similar to stages in a multi-stage turbomachine, where the effective pressure ratio is the product of those for the restriction and compressor. During experiments at constant compressor rotational speed, the compressor is stable over the negatively sloped portion of the pressure ratio vs. flow rate characteristics, so the restriction is eliminated within this operating region to preserve compressor performance. At low flow rates, the slope of the compressor alone characteristics reaches a positive value, and the unrestricted compression system enters mild surge. Further reduction of flow rate with the unrestricted compressor inlet results in a sudden transition to deep surge instabilities.
Technical Paper

Effectiveness of Warning Signals in Semi-Autonomous Vehicles

2019-04-02
2019-01-1013
The rise of automation in the automotive industry has ensured significant progress in vehicle safety and infrastructure. During the transition to full autonomy, the driver is often the redundancy and safety feature in the event of a hazard or automation error. Understanding driver behavior in the transition from non-driver to driver is important for safety. Proper handling of transitions will be more critical as these events become less common and users trust automated driving systems. This research investigates the case of SAE level-3 automated driving systems, where the driver need not constantly pay attention but is responsible for reaction during hazards. Findings include quantitative and qualitative assessment of various warning modes for a distracted driver responding to an automated driving failure situation. Driver response time and behavior for these events are compared to instances with minimal warning systems.
X