Refine Your Search

Search Results

Technical Paper

Ion Current in a Homogeneous Charge Compression Ignition Engine

2007-10-29
2007-01-4052
Homogeneous charge compression ignition (HCCI), has the potential to improve the fuel economy and to reduce NOx emission significantly. Spark plug in SI engine and fuel injector in diesel engine can be used directly to control the start of combustion and the combustion period. However, the combustion of HCCI engine is controlled by the chemical kinetic mainly due to the temperature histories in the cylinder. Therefore the combustion process of HCCI engine cannot be directly controlled. Ion sensors such as a spark plug or a gasket are useful to detect the combustion information in production engines. In this study, the ion current was measured in an HCCI engine with the heated charge mixture of fuel and air without EGR when the charge temperature, equivalence ratio and fuel were varied. Simultaneously in-cylinder pressure was measured and the rate of heat release was calculated. The relationship between the rate of heat release and the ion current is mainly discussed.
Technical Paper

Gas Temperature Measurement in a DME-HCCI Engine using Heterodyne Interferometry with Spark-Plug-in Fiber-Optic Sensor

2007-07-23
2007-01-1848
Non-intrusive measurement of transient unburned gas temperatures was developed with a fiber-optic heterodyne interferometry system. Using the value of the Gladstone-Dale constant for DME gas and combustion pressure we can calculate the in-cylinder temperature inside unburned and burned region. In this experimental study, it was performed to set up a fiber-optic heterodyne interferometry technique to measure the temperature before and behind the combustion region in a DME-HCCI engine. At first, measured temperature was almost the same as the temperature history assuming that the process that changes of the unburned and the burned are polytropic. In addition, we measured the temperature after combustion which of condition was burned gas with DME-HCCI combustion. The developed heterodyne interferometry used the spark-plug-in fiber-optic sensor has a good feasibility to measure the unburned and burned temperature history.
Technical Paper

Residual Gas Fraction Measurement inside Engine Cylinder Using Infrared Absorption Method with Spark-plug Sensor

2007-07-23
2007-01-1849
In this study, residual gas fraction measurements in a spark-ignition engine were carried out using an optical sensor installed in the spark plug with infrared absorption method. The residual gas fraction inside engine cylinder is proportional to the CO2 concentration. Infrared absorption method was applied and an infrared lamp and optical filter (center wavelength: around 4.3 μm) that coincides with the absorption lines of CO2 was used as a light source.The molar absorption coefficient of CO2 is discussed and compared to results in the HITRAN database. The effect of water vapor absorption doesn't affect the absorption of CO2. The absorption characteristics of CO2 were determined in advance using a constant volume vessel. Molar absorption coefficient depends on the CO2 concentration and ambient pressure and temperature, and wavelength of absorption line.
Technical Paper

Visualization of Autoignited Kernel and Propagation of Pressure Wave during Knocking Combustion in a Hydrogen Spark-Ignition Engine

2009-06-15
2009-01-1773
Investigation of knocking combustion in a hydrogen spark-ignition engine is one of the major challenges for future vehicle development. The knock phenomenon in a Spark-Ignition (SI) engine is caused by autoignition of the unburned gas ahead of the flame. The explosive combustion of the end-gas creates a pressure wave that leads to damage of the cylinder wall and the piston head of the engine. We observed autoignition in the end-gas region due to compression by the propagating flame front using a high-speed colour video camera through the optically accessible cylindrical quartz window on the top of the cylinder head. Moreover, a high-speed monochrome video camera operating at a speed of 250, 000 frame/s was used to measure the pressure wave propagation. The goal of this research was to improve our ability to describe the effect of the autoignition process on the end-gas and propagating pressure wave during knocking combustion with the help of a high-speed video camera.
Technical Paper

Effect of EGR on Combustion and Exhaust Emissions in Supercharged Dual-Fuel Natural Gas Engine Ignited with Diesel Fuel

2009-06-15
2009-01-1832
The combustion and exhaust emissions characteristics of a supercharged dual-fuel natural gas engine with a single cylinder were analyzed. We focused on EGR (Exhaust Gas Recirculation) to achieve higher thermal efficiency and lower exhaust emissions. The combustion of diesel fuel (gas oil) as ignition sources was visualized using a high-speed video camera from the bottom of a quartz piston. The luminous intensity and flame decreased as the EGR rate increased. Furthermore, the ignition delay became longer due to the EGR. Characteristics of the combustion and exhaust emissions were investigated with changing EGR rates under supercharged conditions. The indicated mean effective pressure and thermal efficiency decreased with increasing EGR rate. In addition, NOx emissions decreased due to the EGR. In this study two-stage combustion was observed.
Technical Paper

Effect of Fuel Injection Parameters on Engine Performance and Emissions of a Supercharged Producer Gas-Diesel Dual Fuel Engine

2009-06-15
2009-01-1848
This study investigated the effect of some pilot fuel injection parameters, like injection timing, injection pressure and injection quantity on engine performance and exhaust emissions of a supercharged producer gas-diesel dual fuel engine. The engine has been tested to be used as a co-generation engine and its power output is an important matter. Experiments have been done to optimize the injection timing, injection pressure and injection quantity for the maximization of engine power. At constant injection pressures, there is an optimum amount of pilot injection quantity for that maximum engine power is developed without knocking and within the limit of maximum cylinder pressure. Above or below of that amount engine power is decreased. Higher injection pressures generally show better results than lower ones. However, good results can also be obtained with lower injection pressure, if maximum power timings can be selected.
Technical Paper

Mixture Formation Process in a Spark-Ignition Engine with Ethanol Blended Gasoline

2009-06-15
2009-01-1957
In this study, fuel concentration measurements in a spark-ignition (SI) engine with ethanol blended gasoline were carried out using an optical sensor installed in the spark plug with laser infrared absorption technique. The spark plug sensor for in-situ fuel concentration measurement was applied to a port injected SI engine. The molar absorption coefficients of ethanol blended gasoline were determined for various pressures and temperatures in advance using a constant volume vessel with electric heating system. Ethanol blended gasoline with high volumetric ratios shows lower molar absorption coefficients due to lower molar absorption coefficients of ethanol. The molar absorption coefficients of ethanol blended gasoline can be estimated by considering the molar fraction of each component.
Technical Paper

Fuel Breakup Near Nozzle Exit of High-Pressure Swirl Injector for Gasoline Direct Injection Engine

2004-03-08
2004-01-0542
Experimental investigations of fuel breakup very close to nozzle of practical high-pressure swirl injector, which is used in gasoline direct injection (GDI) engine, were carried out. In GDI engines, fuel is directly injected into cylinder therefore the spray characteristics and mixture formation are of primary importance. In this research, visualizations of primary spray formation process were demonstrated using a high-speed video camera (maximum speed: 1Mfps) with a long-distance microscope. Initial state and development of the spray were discussed under the different injection pressure condition. During the injection period, the length and thickness of the liquid sheet, which is produced from the nozzle exit, were measured using Ar-ion laser sheet and high-speed camera. Primary spray structure and behavior of liquid sheet, especially surface wave of liquid sheet, at nozzle exit were discussed using obtained images.
Technical Paper

In-Situ Fuel Concentration Measurement Near Spark Plug by 3.392 μm Infrared Absorption Method-Application to a Port Injected Lean-Burn Engine

2004-03-08
2004-01-1353
In this study, a spark plug sensor for in-situ fuel concentration measurement was applied to a port injected lean-burn engine. Laser infrared absorption method was employed and a 3.392 μm He-Ne laser that coincides with the absorption line of hydrocarbons was used as a light source. In this engine, the secondary valve lift height of intake system was controlled to obtain appropriate swirl and tumble flow in order to achieve lean-burn with the characteristics of intake flow. For such in-cylinder stratified mixture distribution, the fuel concentration near the spark plug is very important factor that affects the combustion characteristics. Therefore, the mixture formation process near the spark plug was investigated with changing fuel injection timing. Under the intake stroke, the timing that fuel passed through near the spark plug depended largely on the fuel injection timing.
Technical Paper

Combustion Diagnostics of a Spark Ignition Engine Using a Spark Plug as an Ion Probe

2002-10-21
2002-01-2838
It is important to develop the technique for measuring the cycle-to-cycle variation of combustion in order to reduce the fuel consumption of the commercial spark ignition engine. In previous study, we had proposed using the spark plug as an ion probe to measure the appearance time of maximum pressure under the lean mixture conditions of the research engine. In this paper the combustion diagnostics for the commercial engine was performed using the spark plug as an ion probe. Under idling conditions the ion current often appeared during the exhaust process. This ion current is dominated by the flame contact area and the flame velocity. In this case there is good correlation between the characteristic value of the ion current and the indicated mean effective pressure (IMEP). Finally using the spark plug as an ion probe can detect the combustion quality under conditions with large cyclic variation.
Technical Paper

Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine

2002-10-21
2002-01-2723
A dual fuel engine fueled with methane from an inlet port and ignited with diesel fuel was prepared. This study focuses on the effects of early injection and exhaust gas recirculation (EGR) on the characteristics of combustion and exhaust emissions. The injection timing was changed between TDC and 50 degrees before the TDC. In the early injection timing, smoke was never seen and hydrocarbons were smaller compared with those at the normal injection timing. However, the combustion becomes too early to obtain an appropriate torque when the equivalence ratio increases. Then, moderate EGR was very effective to force the combustion to retard with lower NOx, higher thermal efficiency and almost the same hydrocarbons and carbon monoxide. The engine operated even under the condition of stoichiometric mixture.
Technical Paper

In-Situ Fuel Concentration Measurement Near Spark Plug by 3.392 μm Infrared Absorption Method-Application to Spark Ignition Engine

2003-03-03
2003-01-1109
This study measured the fuel concentration near a spark plug using a laser infrared absorption method. An IR spark plug sensor with a double-pass measurement length was developed. A He-Ne laser with a wavelength of 3.392 μm, which coincides with the absorption line of hydrocarbons, was used as the light source. In order to confirm the measurement accuracy, the concentrations of a methane-air mixture were measured in a compression-expansion engine. Then, the IR spark plug sensor was used for measurements in a 4-stroke spark-ignition engine fuelled with isooctane. The air/fuel ratio measured using this system clearly agreed with the mean air/fuel ratio.
Technical Paper

Homogeneous Charge Compression Ignition Combustion with Dimethyl Ether - Spectrum Analysis of Chemiluminescence

2003-05-19
2003-01-1828
Homogeneous Charge Compression Ignition (HCCI) combustion with dimethyl ether has been carried out in a single cylinder engine with a transparent piston. The engine was operated at 800 rpm with a wide-open throttle. The intake-premixed mixture was preheated with an electric heater to promote auto-ignition. HCCI combustion with dimethyl ether indicates multi-stage heat releases. Investigations were conducted with visualization of combustion in the cylinder and detailed and temporal spectroscopic measurements using spectrometer. In order to understand reaction mechanism of auto-ignition and combustion mechanism in HCCI engine, spectrum analysis of chemiluminescence was carried out.
Technical Paper

Transient Temperature Measurement of Unburned Gas in an Engine Cylinder Using Laser Interferometry with a Fiber-Optic Sensor

2003-05-19
2003-01-1799
A heterodyne interferometry system with a fiber-optic sensor was developed to measure the temperature history of unburned gas in an engine cylinder. A polarization-preserving fiber and metal mirror were used as the fiber-optic sensor to deliver the test beam to and from the measurement region. This fiber-optic sensor can be assembled in the engine cylinder or the cylinder head without a lot of improvements of an actual engine. The feasibility of our system was sufficient to be applied to temperature history measurement of an unburned gas compressed by flame propagation in an engine cylinder. The resolution of the temperature measurement is approximately 0.7 K, and is dependent on both the sampling clock speed of the A/D converter and the length of the measurement region.
Technical Paper

Combustion Diagnostics of a Spark Ignition Engine by Using Gasket Ion Sensor

2003-05-19
2003-01-1801
A new technique for combustion diagnostics of a spark ignition engine was developed. In this method the ion sensor with the circular configuration was installed into the cylinder head gasket. This sensor is expected to be applied for production engine. The signal measured by the ion sensor was similar with that of cylinder pressure. The peak timing of ion current was consistent with the peak timing of pressure. There was a strong correlation between IMEP and the peak timing of ion current. This sensor is available to detect combustion quality in a spark ignition engine.
Technical Paper

Chemical Kinetics and Computational Fluid-Dynamics Analysis of H2/CO/CO2/CH4 Syngas Combustion and NOx Formation in a Micro-Pilot-Ignited Supercharged Dual Fuel Engine

2017-09-04
2017-24-0027
A chemical kinetics and computational fluid-dynamics (CFD) analysis was performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. For this analysis, a reduced syngas chemical kinetics mechanism was constructed and validated by comparing the ignition delay and laminar flame speed data with those obtained from experiments and other detail chemical kinetics mechanisms available in the literature. The reaction sensitivity analysis was conducted for ignition delay at elevated pressures in order to identify important chemical reactions that govern the combustion process. We have confirmed the statements of other authors that HO2+OH=H2O+O2, H2O2+M=OH+OH+M and H2O2+H=H2+HO2 reactions showed very high sensitivity during high-pressure ignition delay times and had considerable uncertainty.
Technical Paper

Numerical Investigation of Natural Gas-Diesel Dual Fuel Engine with End Gas Ignition

2018-04-03
2018-01-0199
The present study helps to understand the local combustion characteristics of PREmixed Mixture Ignition in the End-gas Region (PREMIER) combustion mode while using increasing amount of natural gas as a diesel substitute in conventional CI engine. In order to reduce NOx emission and diesel fuel consumption micro-pilot diesel injection in premixed natural gas-air mixture is a promising technique. New strategy has been employed to simulate dual fuel combustion which uses well established combustion models. Main focus of the simulation is at detection of an end gas ignition, and creating an unified modeling approach for dual fuel combustion. In this study G-equation flame propagation model is used with detailed chemistry in order to detect end-gas ignition in overall low temperature combustion. This combustion simulation model is validated using comparison with experimental data for dual fuel engine.
Technical Paper

In-Situ Fuel Concentration Measurement near Spark Plug by 3.392 mm Infrared Absorption Method - Pressure and Temperature Dependence of the Gasoline Molar Absorption Coefficient

2006-04-03
2006-01-0182
This paper describes the development and application of a spark plug sensor using a 3.392 μm infrared absorption technique to quantify the instantaneous gasoline concentration near the spark plug. We developed an in situ laser infrared absorption method using a spark plug sensor and a 3.392 μm He-Ne laser as the light source; this wavelength coincides with the absorption line of hydrocarbons. First, we established a database of the molar absorption coefficients of premium gasoline at different pressures and temperatures, and determined that the coefficient decreased with increasing pressure above atmospheric pressure. We then demonstrated a procedure for measuring the gasoline concentration accurately using the infrared absorption technique. The history of the molar absorption coefficient of premium gasoline during the experiment was obtained from the established database using measured in-cylinder pressures and temperatures estimated by taking the residual gas into consideration.
Technical Paper

Measurement of Flame Propagation Characteristics in an SI Engine Using Micro-Local Chemiluminescence Technique

2005-04-11
2005-01-0645
A small Cassegrain optics sensor was developed to measure local chemiluminescence spectra and the local chemiluminescence intensities of OH*, CH*, and C2* in a four-stroke spark-ignition (SI) engine in order to investigate the propagation characteristics of the turbulent premixed flame. The small Cassegrain optics sensor was an M5 type that could be installed in place of a pressure transducer. The measurements could be used to estimate the flame propagation speed, burning zone thickness, and local air/fuel (A/F) ratio for each cycle. The specifications of the small Cassegrain optics sensor were the same as those used for previous engine measurements. In this paper, measurements were made of several A/F ratios using gasoline to fuel the model engine. The performances of two Cassegrain optics sensors were compared to demonstrate the advantages of the new small sensor by measuring the local chemiluminescence intensities of a turbulent premixed flame in the model engine.
Technical Paper

In-situ Unburned Gas Temperature Measurement in a Spark Ignition Engine Using Laser Interferometry

2005-04-11
2005-01-0646
A heterodyne interferometry system with a fiber-optic sensor was developed to measure the temperature history of unburned gas in a spark-ignition engine. A polarization-preserving fiber and metal mirror were used as the fiber-optic sensor to deliver the test beam to and from the measurement region. This fiber-optic sensor can be assembled in an engine cylinder head without a lot of improvements of an actual engine. Adjustment system in the sensor was revised to face the distributed index lens with metal mirror. Before the flame arrived at the developed fiber-optic sensor, measured temperature was almost same with the temperature history after the spark, assuming that the process that changes the unburned gas is adiabatic. In situ unburned gas temperature measurements before knocking in a commercially produced SI engine can be carried out using developed fiber-optic heterodyne interferometry system.
X