Refine Your Search

Topic

Search Results

Journal Article

A Specification Analysis Framework for Aircraft Systems

2016-09-20
2016-01-2023
Future aircraft systems are projected to have order of magnitude greater power and thermal demands, along with tighter constraints on the performance of the power and thermal management subsystems. This trend has led to the need for a fully integrated design process where power and thermal systems, and their interactions, are considered simultaneously. To support this new design paradigm, a general framework for codifying and checking specifications and requirements is presented. This framework is domain independent and can be used to translate requirement language into a structured definition that can be quickly queried and applied to simulation and measurement data. It is constructed by generalizing a previously developed power quality analysis framework. The application of this framework is demonstrated through the translation of thermal specifications for airborne electrical equipment, into the SPecification And Requirement Evaluation (SPARE) Tool.
Journal Article

Electric versus Hydraulic Flight Controls: Assessing Power Consumption and Waste Heat Using Stochastic System Methods

2017-09-19
2017-01-2036
Of all aircraft power and thermal loads, flight controls can be the most challenging to quantify because they are highly variable. Unlike constant or impulsive loads, actuator power demands more closely resemble random processes. Some inherent nonlinearities complicate this even further. Actuation power consumption and waste heat generation are both sensitive to input history. But control activity varies considerably with mission segment, turbulence and vehicle state. Flight control is a major power consumer at times, so quantifying power demand and waste heat is important for sizing power and thermal management system components. However, many designers sidestep the stochastic aspects of the problem initially, leading to overly conservative system sizing. The overdesign becomes apparent only after detailed flight simulations become available. These considerations are particularly relevant in trade studies comparing electric versus hydraulic actuation.
Journal Article

Integrated Power and Thermal Management System (IPTMS) Demonstration Including Preliminary Results of Rapid Dynamic Loading and Load Shedding at High Power

2015-09-15
2015-01-2416
An IPTMS hardware facility has been established in the laboratories of the Aerospace Systems Directorate of the Air Force Research Laboratory (AFRL) at Wright-Paterson Air Force Base (WPAFB). This hardware capability was established to analyze the transient behavior of a high power Electrical Power System (EPS) coupled virtually to a Thermal Management System (TMS) under fast dynamic loading conditions. The system incorporates the use of dynamic electrical load, engine emulation, energy storage, and emulated thermal loads operated to investigate dynamics under step load conditions. Hardware architecture and control options for the IPTMS are discussed. This paper summarizes the IPTMS laboratory demonstration system, its capabilities, and preliminary test results.
Journal Article

A Hybrid Economy Bleed, Electric Drive Adaptive Power and Thermal Management System for More Electric Aircraft

2010-11-02
2010-01-1786
Minimizing energy use on more electric aircraft (MEA) requires examining in detail the important decision of whether and when to use engine bleed air, ram air, electric, hydraulic, or other sources of power. Further, due to the large variance in mission segments, it is unlikely that a single energy source is the most efficient over an entire mission. Thus, hybrid combinations of sources must be considered. An important system in an advanced MEA is the adaptive power and thermal management system (APTMS), which is designed to provide main engine start, auxiliary and emergency power, and vehicle thermal management including environmental cooling. Additionally, peak and regenerative power management capabilities can be achieved with appropriate control. The APTMS is intended to be adaptive, adjusting its operation in order to serve its function in the most efficient and least costly way to the aircraft as a whole.
Technical Paper

Simulation of MADMEL Power Systems Components

1998-04-21
981258
Detailed computer models of system components for More Electric Aircraft have been developed using the Advanced Control System Language (ACSL) and its graphical front-end, Graphic Modeller. Among the devices modeled are a wound-rotor synchronous generator with parallel bridge-rectifier outputs, a switched-reluctance generator, and various loads including a DC-DC converter, an inverter-driven induction motor, and an electro-hydrostatic actuator. Results from the simulations are presented together with corroborating experimental test results.
Technical Paper

Design of a High-Bandwidth, Low-Cost Hydrostatic Absorption Dynamometer with Electronic Load Control

2009-10-06
2009-01-2846
A low-cost hydrostatic absorption dynamometer has been developed for small to medium sized engines. The dynamometer was designed and built by students to support student projects and educational activities. The availability of such a dynamometer permits engine break-in cycles, performance testing, and laboratory instruction in the areas of engines, fuels, sensors, and data acquisition. The dynamometer, capable of loading engines up to 60kW at 155Nm and 3600rpm, incorporates a two-section gear pump and an electronically operated proportional pressure control valve to develop and control the load. A bypass valve permits the use of only one pump section, allowing increased fidelity of load control at lower torque levels. Torque is measured directly on the drive shaft with a strain gage. Torque and speed signals are transmitted by an inductively-powered collar mounted to the dynamometer drive shaft. Pressure transducers at the pump inlet and pump outlet allow secondary load measurement.
Technical Paper

A Reduced-Order Enclosure Radiation Modeling Technique for Aircraft Actuators

2010-11-02
2010-01-1741
Modern aircraft are aerodynamically designed at the edge of flight stability and therefore require high-response-rate flight control surfaces to maintain flight safety. In addition, to minimize weight and eliminate aircraft thermal cooling requirements, the actuator systems have increased power-density and utilize high-temperature components. This coupled with the wide operating temperature regimes experienced over a mission profile may result in detrimental performance of the actuator systems. Understanding the performance capabilities and power draw requirements as a function of temperature is essential in properly sizing and optimizing an aircraft platform. Under the Air Force Research Laboratory's (AFRL's) Integrated Vehicle and Energy Technology (INVENT) Program, detailed models of high performance electromechanical actuators (HPEAS) were developed and include temperature dependent effects in the electrical and mechanical actuator components.
Technical Paper

Digital Electrohydraulic Control for Constant-Deceleration Emergency Braking

2002-03-19
2002-01-1464
A digital electrohydraulic control system for emergency braking is designed, simulated, built, and tested. First, a dynamic model of the system was developed with Matlab Simulink. The parameters are obtained experimentally. Feedback gains are obtained by tuning the model. Then, the digital controller is implemented on an industrial personal computer programmed in Turbo C++. The control strategy is an improved digital version of the PID control. The key element in the control of the brake was an electro-hydraulic proportional pressure valve. Experiments show that the control system successfully realizes constant-deceleration emergency brake within mine safety rules. The same hardware can be reprogrammed for various hoists, different load conditions, and different control objectives. Although the test was conducted on a mine hoist brake, the control system can be applied to most vehicles.
Technical Paper

Power Thermal Management System Design for Enhanced Performance in an Aircraft Vehicle

2010-11-02
2010-01-1805
The thermal management of modern aircraft has become more challenging as aircraft capabilities have increased. The use of thermally resistant composite skins and the desire for low observability, reduced ram inlet size and number, have reduced the ability to transfer heat generated by the aircraft to the environment. As the ability to remove heat from modern aircraft has decreased, the heat loads associated with the aircraft have increased. Early in the aircraft design cycle uncertainty exists in both aircraft requirements and simulation predictions. In order to mitigate the uncertainty, it is advantageous to design thermal management systems that are insensitive to design cycle uncertainty. The risk associated with design uncertainty can be reduced through robust optimization. In the robust optimization of the thermal management system, three noise factors were selected: 1) engine fan air temperature, 2) avionics thermal load, and 3) engine thrust.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Rapid Access to High-Resolution Thermal/Fluid Component Modeling

2012-10-22
2012-01-2170
Although computational fluid dynamics (CFD) simulations have been widely used to successfully resolve turbulence and boundary layer phenomena induced by microscale flow passages in advanced heat exchanger concepts, the expense of such simulations precludes their use within system-level models. However, the effect of component design changes on systems must be better understood in order to optimize designs with little thermal margin, and CFD simulations greatly enhance this understanding. A method is presented to introduce high resolution, 3-D conjugate CFD calculations of candidate heat exchanger cores into dynamic aerospace subsystem models. The significant parameters guiding performance of these heat exchangers are identified and a database of CFD solutions is built to capture steady and unsteady performance of microstructured heat exchanger cores as a function of the identified parameters and flow conditions.
Technical Paper

A New Lab for Testing Biofiltration for Advanced Life Support

2005-07-11
2005-01-3060
Bioregenerative systems for removal of gaseous contaminants are desired for long-term space missions to reduce the equivalent system mass of the air cleaning system. This paper describes an innovative design of a new biofiltration test lab for investigating the capability of biofiltration process for removal of ersatz multi-component gaseous streams representative of spacecraft contaminants released during long-term space travel. The lab setup allows a total of 24 bioreactors to receive identical inlet waste streams at stable contaminant concentrations via use of permeations ovens, needle valves, precision orifices, etc. A unique set of hardware including a Fourier Transform Infrared (FTIR) spectrometer, and a data acquisition and control system using LabVIEW™ software allows automatic, continuous, and real-time gas monitoring and data collection for the 24 bioreactors. This lab setup allows powerful factorial experimental design.
Technical Paper

Equivalent System Mass (ESM) Estimates for Commercially Available, Small-Scale Food Processing Equipment

2004-07-19
2004-01-2526
One of the challenges NASA faces today is developing an Advanced Life Support (ALS) system that will enable long duration space missions beyond low earth orbit (LEO). This ALS system must include a food processing subsystem capable of producing a variety of nutritious, acceptable, and safe edible ingredients and food products from pre-packaged and re-supply foods as well as salad crops grown on the transit vehicle or other crops grown on planetary surfaces. However, designing, building, developing, and maintaining such a subsystem is bound to many constraints and restrictions. The limited power supply, storage locations, variety of crops, crew time, need to minimize waste, and other ESM parameters influence the selection of processing equipment and techniques.
Journal Article

A MATLAB Simulink Based Co-Simulation Approach for a Vehicle Systems Model Integration Architecture

2020-03-10
2020-01-0005
In this paper, a MATLAB-Simulink based general co-simulation approach is presented which supports multi-resolution simulation of distributed models in an integrated architecture. This approach was applied to simulating aircraft thermal performance in our Vehicle Systems Model Integration (VSMI) framework. A representative advanced aircraft thermal management system consisting of an engine, engine fuel thermal management system, aircraft fuel thermal management system and a power and thermal management system was used to evaluate the advantages and tradeoffs in using a co-simulation approach to system integration modeling. For a system constituting of multiple interacting sub-systems, an integrated model architecture can rapidly, and cost effectively address technology insertions and system evaluations. Utilizing standalone sub-system models with table-based boundary conditions often fails to effectively capture dynamic subsystem interactions that occurs in an integrated system.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

A Multi-Domain Component Based Modeling Toolset for Dynamic Integrated Power and Thermal System Modeling

2019-03-19
2019-01-1385
Design of modern aircraft relies heavily on modeling and simulation for reducing cost and improving performance. However, the complexity of aircraft architectures requires accurate modeling of dynamic components across many subsystems. Integrated power and thermal modeling necessitates dynamic simulations of liquid, air, and two-phase fluids within vapor cycle system components, air cycle machine and propulsion components, hydraulic components, and more while heat generation of many on-board electrical components must also be precisely calculated as well. Integration of these highly complex subsystems may result in simulations which are too computationally expensive for quickly modeling extensive variations of aircraft architecture, or will require simulations with reduced accuracy in order to provide computationally inexpensive models.
Technical Paper

A Dynamic Two-Phase Component Model Library for High Heat Flux Applications

2019-03-19
2019-01-1386
Pumped two-phase systems using mini or microchannel heat sink evaporators are prime candidates for high heat flux applications due to relatively low pumping power requirements and efficient heat removal in compact designs. A number of challenges exist in the implementation of these systems including: ensuring subcooled liquid to the pump to avoid cavitation, avoiding dry out conditions in heat exchangers that can lead to failures of the components under cooling, and avoiding flow instabilities that can damage components in an integrated system. To reduce risk and cost, modeling and simulation can be employed in the design and development of these complex systems, but such modeling must include the relevant behavior necessary to capture the above dynamic effects.
Technical Paper

Risk Assessment of Fuel Property Variability Using Quasi-Random Sampling/Design of Experiments Methodologies

2019-03-19
2019-01-1387
Increases in on-board heat generation in modern military aircraft have led to a reliance on thermal management techniques using fuel as a primary heat sink. However, recent studies have found that fuel properties, such as specific heat, can vary greatly between batches, affecting the amount of heat delivered to the fuel. With modern aircraft systems utilizing the majority of available heat sink capacity, an improved understanding of the effects of fuel property variability on overall system response is important. One way to determine whether property variability inside a thermal system causes failure is to perform uncertainty analyses on fuel thermophysical properties and compare results to a risk assessment metric. A sensitivity analysis can be performed on any properties that cause inherent system variability to determine which properties contribute the most significant impact.
Technical Paper

Development and Performance of a Reduced Order Dynamic Aircraft Model

2015-09-15
2015-01-2415
A reduced order dynamic aircraft model has been created for the purpose of enabling constructive simulation studies involving integrated thermal management subsystems. Such studies are motivated by the increasing impact of on-board power and thermal subsystems to the overall performance and mission effectiveness of modern aircraft. Previous higher-order models that have been used for this purpose have the drawbacks of much higher development time, along with much higher execution times in the simulation studies. The new formulation allows for climbs, accelerations and turns without incurring computationally expensive stability considerations; a dynamic inversion control law provides tracking of user-specified mission data. To assess the trade-off of improved run-time performance against model capability, the reduced order formulation is compared to a traditional six degree-of-freedom model of the same air vehicle.
Journal Article

Introduction to Control Volume Based Transient Thermal Limit

2020-03-10
2020-01-0039
Advancement in modern aircraft with the development of more dynamic and efficient technologies has led to these technologies increasingly operated near or at their operation limits. More comprehensive analysis methods based on high-fidelity models co-simulated in an integrated environment are needed to support the full utilization of these advanced technologies. Furthermore, the additional information provided by these new analyses needs to be correlated with updates to traditional metrics and specifications. One such case is the thermal limit requirement that sets the upper bound on a thermal system temperature. Traditionally, this bound is defined based on steady-state conditions. However, advanced thermal management systems experience dynamic events where the temperature is not static and may violate steady-state requirements for brief periods of time.
X