Refine Your Search

Topic

Search Results

Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

Numerical Investigation of Non-Reacting and Reacting Diesel Sprays in Constant-Volume Vessels

2009-06-15
2009-01-1971
A numerical investigation on a series of Diesel spray experiments in constant-volume vessels is proposed. Non reacting conditions were used to assess the spray models and to determine the grid size required to correctly predict the fuel-air mixture formation process. To this end, not only computed liquid and vapor penetrations were compared with experimental data, but also a detailed comparison between computed and experimental mixture fraction distributions was performed at different distances from the injector. Grid dependency was reduced by introducing an Adaptive Local Mesh Refinement technique (ALMR) with an arbitrary level of refinement. Once the capabilities of the current implemented spray models have been assessed, reacting conditions at different ambient densities and temperatures were considered. A Perfectly Stirred Reactor (PSR) combustion model, based on a direct integration of complex chemistry mechanisms over a homogenous cell, was adopted.
Journal Article

Data Driven Estimation of Exhaust Manifold Pressure by Use of In-cylinder Pressure Information

2013-04-08
2013-01-1749
Although the application of cylinder pressure sensors to gain insight into the combustion process is not a novel topic itself, the recent availability of inexpensive in-cylinder pressure sensors has again prompted an upcoming interest for the utilization of the cylinder pressure signal within engine control and monitoring. Besides the use of the in-cylinder pressure signal for combustion analysis and control the information can also be used to determine related quantities in the exhaust or intake manifold. Within this work two different methods to estimate the pressure inside the exhaust manifold are proposed and compared. In contrary to first principle based approaches, which may require time extensive parameterization, alternative data driven approaches were pursued. In the first method a Principle Component Analysis (PCA) is applied to extract the cylinder pressure information and combined with a polynomial model approach.
Technical Paper

Numerical Investigation on GDI Spray under High Injection Pressure up to 100 MPa

2020-09-15
2020-01-2108
In recent years, the increase of gasoline fuel injection pressure is a way to improve thermal efficiency and lower engine-out emissions in GDI homogenous combustion concept. The challenge of controlling particulate formation as well in mass and number concentrations imposed by emissions regulations can be pursued improving the mixture preparation process and avoiding mixture inhomogeneity with ultra-high injection pressure values up to 100 MPa. The increase of the fuel injection pressure in GDI homogeneous systems meets the demand for increased injector static flow, while simultaneously improves the spray atomization and mixing characteristics with consequent better combustion performance. Few studies quantify the effects of high injection pressure on transient gasoline spray evolution. The aim of this work was to simulate with OpenFOAM the spray morphology of a commercial gasoline injected in a constant volume vessel by a prototypal GDI injector.
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Journal Article

A Coupled 1D-multiD Nonlinear Simulation of I.C. Engine Silencers with Perforates and Sound-Absorbing Material

2009-04-20
2009-01-0305
Nowadays a great attention is paid to the level and quality of noise radiated from the tailpipe end of intake and exhaust systems, to control the gas dynamic noise emitted by the engine as well as the characteristics of the cabin interior sound. The muffler geometry can be optimized consequently, to attenuate or remark certain spectral components of the engine noise, according to the result expected. Evidently the design of complex silencing systems is a time-consuming operation, which must be carried out by means of concurrent experimental measurements and numerical simulations. In particular, 1D and multiD linear/non-linear simulation codes can be applied to predict the silencer behavior in the time and frequency domain. This paper describes the development of a 1D-multiD integrated approach for the simulation of complex muffler configurations such as reverse chambers with inlet and outlet pipe extensions and perforated silencers with the addition of sound absorbing material.
Journal Article

Experimental Characterization of High-Pressure Impinging Sprays for CFD Modeling of GDI Engines

2011-04-12
2011-01-0685
Today, Direct-Injection systems are widely used on Spark-Ignition engines in combination with turbo-charging to reduce the fuel-consumption and the knock risks. In particular, the spread of Gasoline Direct Injection (GDI) systems is mainly related to the use of new generations of multi-hole, high-pressure injectors whose characteristics are quite different with respect to the hollow-cone, low-pressure injectors adopted in the last decade. This paper presents the results of an experimental campaign conducted on the spray produced by a GDI six-holes injector into a constant volume vessel with optical access. The vessel was filled with air at atmospheric pressure. Different operating conditions were considered for an injection pressure ranging from 3 to 20 MPa. For each operating condition, spray images were acquired by a CCD camera and then post processed to evaluate the spray penetration and cone angles.
Journal Article

Improving the Simulation of the Acoustic Performance of Complex Silencers for ICE by a Multi-Dimensional Non-Linear Approach

2012-04-16
2012-01-0828
In this paper a three-dimensional time-domain CFD approach has been employed to predict and analyze the acoustic attenuation performance of complex perforated muffler geometries, where strong 3D effects limit the validity of the use of one-dimensional models. A pressure pulse has been imposed at the inlet to excite the wave motion, while unsteady flow computation have been performed to acquire the time histories of the pressures upstream and downstream of the silencer. Pressures in the time domain have been then transformed to acoustic pressures in the frequency domain, to predict the transmission loss.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

An Experimental Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port

2013-04-08
2013-01-0561
The flow field resulting from injecting a gas jet into a crossflow confined in a narrow square duct has been studied under steady regime using schlieren imaging and laser Doppler velocimetry (LDV). This transparent duct is intended to simulate the intake port of an internal combustion engine fueled by gaseous mixture, and the jet is issued from a round nozzle. The schlieren images show that the relative small size of the duct would confine the development of the transverse jet, and the interaction among jet and sidewalls strongly influences the mixing process between jet and crossflow. The mean velocity and turbulence fields have been studied in detail through LDV measurements, at both center plane and several cross sections. The well-known flow feature formed by a counter rotating vortex pair (CVP) has been observed, which starts to appear at the jet exit section and persists far downstream contributing to enhancing mixing process.
Technical Paper

Modeling Ignition and Premixed Combustion Including Flame Stretch Effects

2017-03-28
2017-01-0553
Objective of this work is the incorporation of the flame stretch effects in an Eulerian-Lagrangian model for premixed SI combustion in order to describe ignition and flame propagation under highly inhomogeneous flow conditions. To this end, effects of energy transfer from electrical circuit and turbulent flame propagation were fully decoupled. The first ones are taken into account by Lagrangian particles whose main purpose is to generate an initial burned field in the computational domain. Turbulent flame development is instead considered only in the Eulerian gas phase for a better description of the local flow effects. To improve the model predictive capabilities, flame stretch effects were introduced in the turbulent combustion model by using formulations coming from the asymptotic theory and recently verified by means of DNS studies. Experiments carried out at Michigan Tech University in a pressurized, constant-volume vessel were used to validate the proposed approach.
Technical Paper

Effects of Turbulence Modulation Addition in OpenFOAM® Toolkit on High Pressure Fuel Sprays

2011-04-12
2011-01-0820
The OpenFOAM® CFD methodology is nowadays employed for simulation in internal combustion engines and a lot of work has been done for an appropriate description of all complex phenomena. At the moment in the RANS turbulence models available in the OpenFOAM® toolbox the turbulence modulation is not yet included, and the present work analyzes the predictive capabilities of the code in simulating high injection pressure fuel sprays after modeling the influence of the dispersed phase on the turbulence structure. Different experiments were employed for the validation. At first, non-evaporating diesel spray was considered in a constant volume and quiescent vessel. The validation was performed via the available experimental spray evolution in terms of penetrations and spatial/temporal fuel distributions. Then the Sandia combustion chamber was chosen for diesel spray simulation in non-reacting conditions.
Technical Paper

CFD Investigation of the Impact of Electrical Heating on the Light-off of a Diesel Oxidation Catalyst

2018-04-03
2018-01-0961
In the last years, as a response to the more and more restrictive emission legislation, new devices (SRC, DOC, NOx-trap, DPF) have been progressively introduced as standard components of modern after-treatment system for Diesel engines. In addition, the adoption of electrical heating is nowadays regarded with interest as an effective solution to promote the light-off of the catalyst at low temperature, especially at the start-up of the engine and during the low load operation of the engine typical of the urban drive. In this work, a state-of-the-art 48 V electrical heated catalyst is considered, in order to investigate its effect in increasing the abatement efficiency of a standard DOC. The electrical heating device considered is based on a metallic support, arranged in a spiral layout, and it is heated by the Joule effect due to the passage of the electrical current.
Technical Paper

A Comprehensive Model to Predict the Initial Stage of Combustion in SI Engines

2013-04-08
2013-01-1087
A correct prediction of the initial stages of the combustion process in SI engines is of great importance to understand how local flow conditions, fuel properties, mixture stratification and ignition affect the in-cylinder pressure development and pollutant formation. However, flame kernel growth is governed by many interacting processes including energy transfer from the electrical circuit to the gas phase, interaction between the plasma channel and the flow field, transition between different combustion regimes and gas expansion at very high temperatures. In this work, the authors intend to present a comprehensive, multi-dimensional model that can be used to predict the initial combustion stages in SI engines. In particular, the spark channel is represented by a set of Lagrangian particles where each one of them acts as a single flame kernel.
Technical Paper

Modeling of Pressure Wave Reflection from Open-Ends in I.C.E. Duct Systems

2010-04-12
2010-01-1051
In the most elementary treatment of plane-wave reflection at the open end of a duct system, it is often assumed that the ends are pressure nodes. This implies that pressure is assumed as a constant at the open end termination and that steady flow boundary condition is supposed as instantaneously established. While this simplifying assumption seems reasonable, it does not consider any radiation of acoustic energy from the duct into the surrounding free space; hence, an error in the estimation of the effects of the flow on the acoustical response of an open-end duct occurs. If radiation is accounted, a complicated three-dimensional wave pattern near the duct end is established, which tends to readjust the exit pressure to its steady-flow level. This adjustment process is continually modified by further incident waves, so that the effective instantaneous boundary conditions which determine the reflected waves depend on the flow history.
Technical Paper

A Numerical Study on the Sensitivity of Soot and NOx Formation to the Operating Conditions in Heavy Duty Engines

2018-04-03
2018-01-0177
In this paper, computation fluid dynamics (CFD) simulations are employed to describe the effect of flow parameters on the formation of soot and NOx in a heavy duty engine under low load and high load. The complexity of diesel combustion, specially when soot, NOx and other emissions are of interest, requires using a detailed chemical mechanism to have a correct estimation of temperature and species distribution. In this work, Multiple Representative Interactive Flamelets (MRIF) method is employed to describe the chemical reactions, ignition, flame propagation and emissions in the engine. A phenomenological model for soot formation, including soot nucleation, coagulation and oxidation with O2 and OH is incorporated into the flamelet combustion model. Different strategies for modelling NOx are chosen to take into account the longer time scale for NOx formation. The numerical results are compared with experimental data to show the validity of the model for the cases under study.
Technical Paper

Considerations in Designing a Recovery Steam Generator for Incineration Plants

1992-08-03
929266
The design of recovery steam generators for incineration plants encounters certain specific problems, related to the nature of the exhausted gases, which, if not properly faced, can strongly condition the conduction of the whole system. Two problems, namely, demand for particular attention: the corrosion at high temperature and the formation of organochlorine compounds, in presence of ashes and/or deposits for definite temperature intervals. These phenomena can be controlled and minimized, whenever possible, by limiting to the greatest extent the regions where the temperatures of the metallic walls and of the ashes and/or deposits are within the critical interval.
Technical Paper

Effect of Spray-Wall Interaction on Air Entrainment in a Transient Diesel Spray

1993-03-01
930920
The influence of spray-wall interaction on air entrainment in an unsteady non-evaporating diesel spray was studied using laser Doppler anemometry. The spray was injected into confined quiescent air at ambient pressure and temperature and made to impact on a flat wall. The air velocity component normal to a cylindrical surface surrounding the spray was measured during the entire injection period, allowing to evaluate the time history of the entrained air mass flow rate. The influence of wall distance and spray impingement angle on air entrainment characteristics has been investigated and the results indicate that the presence of a wall increases the entrained mass flow rate in the region close to the surface, during the main injection period. Normal impingement appears to produce stronger effects than oblique incidence at 30 and 45 deg. A qualitative explanation of the results is also proposed, based on the drop-gas momentum exchange mechanism.
Technical Paper

Effect of Gas Density and Temperature on Air Entrainment in a Transient Diesel Spray

1996-02-01
960862
The air entrainment in a transient diesel spray was studied using laser Doppler anemometry to provide information on the effect of gas density and temperature. The spray was injected vertically into a confined quiescent atmosphere and the entrained mass flow rate was evaluated by measuring the air velocity component normal to a cylindrical geometric surface surrounding the spray, and extending to about 200 nozzle diameters (50 mm). The experimental results, relative to a density range from 0.84 to 7.02 kg/m3 and a temperature range from 293 to 473 K, indicate that the non dimensional entrainment rate, averaged in time over the main injection period, depends on the distance from the nozzle and both gas density and temperature. A first analysis, based on the available data, allowed to quantify the dependence and provided a correlation with such variables.
Technical Paper

CFD Modelling of Gasoline Sprays

2005-09-11
2005-24-086
A comprehensive model for sprays emerging from high pressure swirl injectors for GDI engine application has been developed. The primary and secondary atomization mechanism as well as the evaporation process both in standard and superheated conditions are taken into account. The spray modelling after the injection is based on the Liquid Instability Sheet Atomization (LISA) approach, modified to correctly predict the liquid sheet thickness at the breakup length. The effect of different values of the superheat degree on evaporation and impact on the spray distribution and fuel-air mixing is analyzed. Comparisons with experimental data show good agreements under atmospheric conditions and with different superheated degrees, while some discrepancies occur under higher ambient pressures.
X