Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

A Reduced Order Model for the Aeroelastic Analysis of Flexible Wings

2013-09-17
2013-01-2158
The aeroelastic design of highly flexible wings, made of extremely light structures yet still capable of carrying a considerable amount of non-structural weights, requires significant effort. The complexity involved in such design demands for simplified mathematical tools based on appropriate reduced order models capable of predicting the accurate aeroelastic behaviour. The model presented in this paper is based on a consistent nonlinear beam model, capable of simulating the unconventional aeroelastic behaviour of flexible composite wings. The partial differential equations describing the wing dynamics are reduced to a dimensionless form in terms of three ordinary differential equations using a discretization technique, along with Galerkin's method. Within this approach the nonlinear structural model an unsteady indicial based aerodynamic model with dynamic stall are coupled.
Journal Article

Theoretical and Experimental Flutter Predictions in High Aspect Ratio Composite Wings

2011-10-18
2011-01-2722
Next generation of composite civil aircrafts and unconventional configurations, such as High Altitude Long Endurance HALE-UAV, exhibit aeroelastic instabilities quite different from their rigid counterparts. Consequently, one has to deal with phenomena not usually considered in classical aircraft design. Alternative design criteria are needed in order to maintain the safety levels imposed by the regulations and required for certification. The A2-Net-Team project aims to build a multi-disciplinary network of researchers with complementary expertise to develop analytical methods used for a better understanding and assessment of the factors contributing to the occurrence of critical aeroservoelastic instabilities. Along with modeling and numerical investigations a test article will also provide the opportunity to modify and calibrate theoretical models, to highlight and explore their limits, to recommend the necessary modifications and future pertinent investigations.
Technical Paper

Experimental Investigation on a 3D Wing Section Hosting Multiple SJAs for Stall Control Purpose

2015-09-15
2015-01-2453
Flow control over aerodynamic shapes in order to achieve performance enhancements has been a lively research area for last two decades. Synthetic Jet Actuators (SJAs) are devices able to interact actively with the flow around their hosting structure by providing ejection and suction of fluid from the enclosed cavity containing a piezo-electric oscillating membrane through dedicated orifices. The research presented in this paper concerns the implementation of zero-net-mass-flux SJAs airflow control system on a NACA0015, low aspect ratio wing section prototype. Two arrays with each 10 custom-made SJAs, installed at 10% and 65% of the chord length, make up the actuation system. The sensing system consists of eleven acoustic pressure transducers distributed in the wing upper surface and on the flap, an accelerometer placed in proximity of the wing c.g. and a six-axis force balance for integral load measurement.
X