Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improved Model for Coupled Structural-Acoustic Modes of Tires

2015-06-15
2015-01-2199
Experimental measurements of tire tread band vibration have provided direct evidence that higher order structural-acoustic modes exist in tires, not just the well-known fundamental acoustical mode. These modes display both circumferential and radial pressure variations within the tire's air cavity. The theory governing these modes has thus been investigated. A brief recapitulation of the previously-presented coupled structural-acoustical model based on a tensioned string approach will be given, and then an improved tire-acoustical model with a ring-like shape will be introduced. In the latter model, the effects of flexural and circumferential stiffness are considered. This improved model accounts for propagating in-plane vibration in addition to the essentially structure-borne flexural wave and the essentially airborne longitudinal wave accounted for in the previous model. The longitudinal structure-borne wave “cuts on” at the tire's circumferential ring frequency.
Journal Article

Adaptive Robust Motion Control of an Excavator Hydraulic Hybrid Swing Drive

2015-09-29
2015-01-2853
Over the last decade, a number of hybrid architectures have been proposed with the main goal of minimizing energy consumption of off-highway vehicles. One of the architecture subsets which has progressively gained attention is hydraulic hybrids for earth-moving equipment. Among these architectures, hydraulic hybrids with secondary-controlled drives have proven to be a reliable, implementable, and highly efficient alternative with the potential for up to 50% engine downsizing when applied to excavator truck-loading cycles. Multi-input multi-output (MIMO) robust linear control strategies have been developed by the authors' group with notable improvements on the control of the state of charge of the high pressure accumulator. Nonetheless, the challenge remains to improve the actuator position and velocity tracking.
Journal Article

Mapping of Fuel Anti-Knock Requirements for a Small Remotely Piloted Aircraft Engine

2016-11-08
2016-32-0045
Small remotely piloted aircraft (10-25 kg) powered by internal combustion engines typically operate on motor gasoline, which has an anti-knock index (AKI) of >80. To comply with the single-battlefield-fuel initiative in DoD Directive 4140.25, interest has been increasing in converting the 1-10 kW power plants in the aforementioned size class to run on lower AKI fuels such as diesel and JP-8, which have AKIs of ~20. It has been speculated that the higher losses (short-circuiting, incomplete combustion, heat transfer) that cause these engines to have lower efficiencies than their conventional-scale counterparts may also relax the fuel-AKI requirements of the engines. To investigate that idea, the fuel-AKI requirement of a 3W-55i engine was mapped and compared to that of the engine on the manufacturer-recommended 98 octane number (ON) fuel.
Journal Article

A First Principles Based Approach for Dynamic Modeling of Turbomachinery

2016-09-20
2016-01-1995
As the cost and complexity of modern aircraft systems increases, emphasis has been placed on model-based design as a means for reducing development cost and optimizing performance. To facilitate this, an appropriate modeling environment is required that allows developers to rapidly explore a wider design space than can cost effectively be considered through hardware construction and testing. This wide design space can then yield solutions that are far more energy efficient than previous generation designs. In addition, non-intuitive cross-coupled subsystem behavior can also be explored to ensure integrated system stability prior to hardware fabrication and testing. In recent years, optimization of control strategies between coupled subsystems has necessitated the understanding of the integrated system dynamics.
Journal Article

Measurement of Loss Pathways in Small, Two-Stroke Internal-Combustion Engines

2017-03-14
2017-01-9276
The rapid expansion of the market for remotely piloted aircraft (RPA) includes a particular interest in 10-25 kg vehicles for monitoring, surveillance, and reconnaissance. Power-plant options for these aircraft are often 10-100 cm3 internal combustion engines. Both power and fuel conversion efficiency decrease with increasing rapidity in the aforementioned size range. Fuel conversion efficiency decreases from ∼30% for conventional-scale engines (>100 cm3 displacement) to <5% for micro glow-fuel engines (<10 cm3 displacement), while brake mean effective pressure decreases from >10 bar (>100 cm3) to <4 bar (<10 cm3). Based on research documented in the literature, the losses responsible for the increase in the rate of decreasing performance cannot be clearly defined. Energy balances consisting of five pathways were experimentally determined on two engines that are representative of Group-2 RPA propulsion systems and compared to those in the literature for larger and smaller engines.
Technical Paper

Design Optimization of Sandwich Composite Armors for Blast Mitigation Using Bayesian Optimization with Single and Multi-Fidelity Data

2020-04-14
2020-01-0170
The most common and lethal weapons against military vehicles are the improvised explosive devices (IEDs). In an explosion, critical cabin’s penetrations and high accelerations can cause serious injuries and death of military personnel. This investigation uses single and multi-fidelity Bayesian optimization (BO) to design sandwich composite armors for blast mitigation. BO is an efficient methodology to solve optimization problems that involve black-box functions. The black-box function of this work is the finite element (FE) simulation of the armor subjected to blast. The main two components of BO are the surrogate model of the black-box function and the acquisition function that guides the optimization. In this investigation, the surrogate models are Gaussian Process (GP) regression models and the acquisition function is the multi-objective expected improvement (MEI) function. Information from low and high fidelity FE models is used to train the GP surrogates.
Technical Paper

A New Approach of Generating Travel Demands for Smart Transportation Systems Modeling

2020-04-14
2020-01-1047
The transportation sector is facing three revolutions: shared mobility, electrification, and autonomous driving. To inform decision making and guide smart transportation system development at the city-level, it is critical to model and evaluate how travelers will behave in these systems. Two key components in such models are (1) individual travel demands with high spatial and temporal resolutions, and (2) travelers’ sociodemographic information and trip purposes. These components impact one’s acceptance of autonomous vehicles, adoption of electric vehicles, and participation in shared mobility. Existing methods of travel demand generation either lack travelers’ demographics and trip purposes, or only generate trips at a zonal level. Higher resolution demand and sociodemographic data can enable analysis of trips’ shareability for car sharing and ride pooling and evaluation of electric vehicles’ charging needs.
Journal Article

Fuel-Air Mixing Characteristics of DI Hydrogen Jets

2008-04-14
2008-01-1041
The following computational study examines the structure of sonic hydrogen jets using inlet conditions similar to those encountered in direct-injection hydrogen engines. Cases utilizing the same mass and momentum flux while varying exit-to-chamber pressure ratios have been investigated in a constant-volume computational domain. Furthermore, subsonic versus sonic structures have been compared using both hydrogen and ethylene fuel jets. Finally, the accuracy of scaling arguments to characterize an underexpanded jet by a subsonic “equivalent jet” has been assessed. It is shown that far downstream of the expansion region, the overall jet structure conforms to expectations for self-similarity in the far-field of subsonic jets. In the near-field, variations in fuel inlet-to-chamber pressure ratios are shown to influence the mixing properties of sonic hydrogen jets. In general, higher pressure ratios result in longer shock barrel length, though numerical resolution requirements increase.
Journal Article

A Novel Pressure-Feedback Based Adaptive Control Method to Damp Instabilities in Hydraulic Machines

2012-09-24
2012-01-2035
Excessive vibration and poor controllability occur in many mobile fluid power applications, with negative consequences as concerns operators' health and comfort as well as machine safety and productivity. This paper addresses the problem of reducing oscillations in fluid power machines presenting a novel control technique of general applicability. Strong nonlinearities of hydraulic systems and the unpredictable operating conditions of the specific application (e.g. uneven ground, varying loads, etc.) are the main challenges to the development of satisfactory general vibration damping methods. The state of the art methods are typically designed as a function of the specific application, and in many cases they introduce energy dissipation and/or system slowdown. This paper contributes to this research by introducing an energy efficient active damping method based on feedback signals from pressure sensors mounted on the flow control valve block.
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
Technical Paper

Rechargeable Lithium-Ion Based Batteries and Thermal Management for Airborne High Energy Electric Lasers

2006-11-07
2006-01-3083
Advances in the past decade of the energy and power densities of lithium-ion based batteries for hybrid electric vehicles and various consumer applications have been substantial. Rechargeable high rate lithium-ion batteries are now exceeding 6 kW/kg for short discharge times (<15 seconds). Rechargeable lithium-ion polymer batteries, for applications such as remote-control aircraft, are achieving simultaneously high energy density and high power density (>160 Whr/kg at >1.0 kW/kg). Some preliminary test data on a rechargeable lithium-ion polymer battery is presented. The use of high rate rechargeable lithium-ion batteries as a function of onboard power, electric laser power level, laser duty cycle, and total mission time is presented. A number of thermal management system configurations were examined to determine system level weight impacts. Lightweight configurations would need a regenerative thermal energy storage subsystem.
Technical Paper

Transient Turbine Engine Modeling and Real-Time System Integration Prototyping

2006-11-07
2006-01-3040
Aircraft power demands continue to increase with the increase in electrical subsystems. These subsystems directly affect the behavior of the power and propulsion systems and can no longer be neglected or assumed linear in system analyses. The complex models designed to integrate new capabilities have a high computational cost. This paper investigates the possibility of using a hardware-in-the-loop (HIL) analysis with real time integration. A representative electrical power system is removed from a turbine engine model simulation and replaced with the appropriate hardware attached to a 350 horsepower drive stand. In order to update the model to proper operating conditions, variables are passed between the hardware and the computer model. Using this method, a significant reduction in runtime is seen, and the turbine engine model is usable in a real time environment. Scaling is also investigated for simulations to be performed that exceed the operating parameters of the drive stand.
Technical Paper

Integrated Hardware-in-the-Loop Simulation of a Complex Turbine Engine and Power System

2006-11-07
2006-01-3035
The interdependency between propulsion, power, and thermal subsystems on military aircraft such as the F-35 Joint Strike Fighter (JSF) and F-22 Raptor continues to increase as advanced war-fighting capabilities including solid-state radars, electronic attack, electric actuation, and Directed Energy Weaponry (DEW) expand to meet Air Force needs. Novel analysis and testing methodologies are required to predict these interdependencies and address adverse interactions prior to costly hardware prototyping. As a result, the Air Force Research Laboratory (AFRL) has established a dynamic hardware-in-the-loop (HIL) test-bed wherein transient simulations can be integrated through advanced real-time simulation with prototype hardware for integrated system studies and analysis. This paper details a test-bed configuration where a dynamic simulation of an aircraft turbine engine is utilized to control a dual-head electric drive stand.
Technical Paper

Modeling and Simulation of an Electric Warship Integrated Engineering Plant

2006-11-07
2006-01-3050
A layered approach to the simulation of dynamically interdependent systems is presented. In particular, the approach is applied to the integrated engineering plant of a notional all-electric warship. The models and parameters of the notional ship are presented herein. This approach is used to study disruptions to the integrated engineering plant caused by anti-ship missiles. Example simulation results establish the effectiveness of this approach in examining the propagation of faults and cascading failures throughout a dynamically interdependent system of systems.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

2007-09-17
2007-01-3910
There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

Comparisons of Computed and Measured Results of Combustion in a Diesel Engine

1998-02-23
980786
Results of computations of flows, sprays and combustion performed in an optically- accessible Diesel engine are presented. These computed results are compared with measured values of chamber pressure, liquid penetration, and soot distribution, deduced from flame luminosity photographs obtained in the engine at Sandia National Laboratories and reported in the literature. The computations were performed for two operating conditions representing low load and high load conditions as reported in the experimental work. The computed and measured peak pressures agree within 5% for both the low load and the high load conditions. The heat release rates derived from the computations are consistent with expectations for Diesel combustion with a premixed phase of heat release and then a diffusion phase. The computed soot distribution shows noticeable differences from the measured one.
Technical Paper

The Computed Structure of a Combusting Transient Jet Under Diesel Conditions

1998-02-23
981071
Numerical computations of combusting transient jets are performed under diesel-like conditions. Discussions of the structure of such jets are presented from global and detailed points of view. From a global point of view, we show that the computed flame heights agree with deductions from theory and that integrated soot mass and heat release rates are consistent with expected trends. We present results of several paramaters which characterise the details of the jet structure. These are fuel mass fractions, temperature, heat release rates, soot and NO. Some of these parameters are compared with the structure of a combusting diesel spray as deduced from measurements and reported in the literature. The heat release rate contours show that the region of chemical reactions is confined to a thin sheet as expected for a diffusion flame. The soot contour plots appear to agree qualitatively with the experimental observations.
Technical Paper

Simulation of MADMEL Power Systems Components

1998-04-21
981258
Detailed computer models of system components for More Electric Aircraft have been developed using the Advanced Control System Language (ACSL) and its graphical front-end, Graphic Modeller. Among the devices modeled are a wound-rotor synchronous generator with parallel bridge-rectifier outputs, a switched-reluctance generator, and various loads including a DC-DC converter, an inverter-driven induction motor, and an electro-hydrostatic actuator. Results from the simulations are presented together with corroborating experimental test results.
Technical Paper

An Automated State Model Generation Algorithm for Simulation/Analysis of Power Systems with Power Electronic Components

1998-04-21
981256
In this paper, a recently-developed algorithmic method of deriving the state equations of power systems containing power electronic components is described. Therein the system is described by the pertinent branch parameters and the circuit topology; however, unlike circuit-based algorithms, the difference equations are not implemented at the branch level. Instead, the composite system state equations are established. A demonstration of the computer implementation of this algorithm to model a variable-speed, constant-frequency aircraft generation system is described. Because of the large number of states and complexity of the system, particular attention is placed on the development of a model structure which provides optimal simulation efficiency.
X