Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

Soot Formation Modelling of Spray-A Using a Transported PDF Approach

2015-09-01
2015-01-1849
Numerical simulations of soot formation were performed for n-dodecane spray using the transported probability density function (TPDF) method. Liquid n-dodecane was injected with 1500 bar fuel pressure into a constant-volume vessel with an ambient temperature, oxygen volume fraction and density of 900 K, 15% and 22.8 kg/m3, respectively. The interaction by exchange with the mean (IEM) model was employed to close the micro-mixing term. The unsteady Reynolds-averaged Navier-Stokes (RANS) equations coupled with the realizable k-ε turbulence model were used to provide turbulence information to the TPDF solver. A 53-species reduced n-dodecane chemical mechanism was employed to evaluate the reaction rates. Soot formation was modelled with an acetylene-based two-equation model which accounts for simultaneous soot particle inception, surface growth, coagulation and oxidation by O2 and OH.
Technical Paper

Exploration of Cavitation-Suppressing Orifice Designs for a Heavy-Duty Diesel Injector Operating with Straight-Run Gasoline

2019-09-09
2019-24-0126
The occurrence of cavitation inside injectors is generally undesirable since it can cause material erosion and result in deviations from the expected injector performance. Previous numerical work employing an injector geometry measured with x-ray diagnostics and operating with a high-volatility straight-run gasoline (SRG) has shown that: (1) most of the cavitation is generally observed at low needle lifts, (2) needle motion is responsible for asymmetric structures in the internal flow as well as large pressure and velocity gradients that trigger phase transition at the orifice inlets, and (3) cavitation affects the injector discharge coefficient and distribution of injected fuel. To explore the potential for material damage within the injector orifices due to cavitation cloud collapse, the cavitation-induced erosion risk assessment (CIERA) tool has been applied for the first time to the realistic geometry of a heavy-duty injector using the CONVERGE software.
X